17 citations to https://www.mathnet.ru/rus/im1254
-
Р. Ч. Кулаев, А. Б. Шабат, “Законы сохранения в задаче о ступеньке для цепочки Вольтерра”, Уфимск. матем. журн., 11:1 (2019), 61–67 ; R. Ch. Kulaev, A. B. Shabat, “Conservation laws for Volterra chain with initial step-like condition”, Ufa Math. J., 11:1 (2019), 63–69
-
А. Б. Шабат, В. Э. Адлер, “Матрицы Картана в теории цепочек Тоды–Дарбу”, ТМФ, 196:1 (2018), 22–29 ; A. B. Shabat, V. E. Adler, “Cartan matrices in the Toda–Darboux chain theory”, Theoret. and Math. Phys., 196:1 (2018), 957–964
-
Thierry Combot, “Rational Integrability of Trigonometric Polynomial Potentials on the Flat Torus”, Regul. Chaotic Dyn., 22:4 (2017), 386–497
-
Vladimir D. Ivashchuk, “On Brane Solutions with Intersection Rules Related to Lie Algebras”, Symmetry, 9:8 (2017), 155
-
Pantelis A. Damianou, Hervé Sabourin, Pol Vanhaecke, “Intermediate Toda Systems”, Regul. Chaotic Dyn., 20:3 (2015), 277–292
-
V. Rom-Kedar, D. Turaev, “Billiards: A singular perturbation limit of smooth Hamiltonian flows”, Chaos, 22:2 (2012), 026102
-
Vladimir D. Ivashchuk, Vitaly N. Melnikov, “On Brane Solutions Related to Non-Singular Kac–Moody Algebras”, SIGMA, 5 (2009), 070, 34 pp.
-
Vadim Kuznetsov, Evgeny Sklyanin, “Bäcklund Transformation for the BC-Type Toda Lattice”, SIGMA, 3 (2007), 080, 17 pp.
-
Pantelis A Damianou, “On the bi-Hamiltonian structure of Bogoyavlensky–Toda lattices”, Nonlinearity, 17:2 (2004), 397
-
В. В. Козлов, Д. В. Трещёв, “Полиномиальные законы сохранения квантовых систем”, ТМФ, 140:3 (2004), 460–479 ; V. V. Kozlov, D. V. Treschev, “Polynomial Conservation Laws in Quantum Systems”, Theoret. and Math. Phys., 140:3 (2004), 1283–1298