100 citations to https://www.mathnet.ru/rus/im1239
  1. Hong-Yan Zhi, Hui Chang, “Invariance of Painlevé property for some reduced (1+1)-dimensional equations”, Chinese Phys. B, 22:11 (2013), 110203  crossref
  2. Taogetusang, “New infinite sequence soliton-like solutions of (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation”, Acta Phys. Sin., 62:21 (2013), 210201  crossref
  3. Zeng Wen-Li, Ma Song-Hua, Ren Qing-Bao, “Exact solutions and soliton excitations for the (2+1)-dimensional Bogoyavlenskii-Schiff system”, Acta Phys. Sin., 61:11 (2012), 110508  crossref
  4. Lü Zhuo-Sheng, Duan Li-Xia, Xie Fu-Ding, “Cross Soliton-Like Waves for the (2+1)-Dimensional Breaking Soliton Equation”, Chinese Phys Lett, 27:7 (2010), 070502  crossref
  5. Xuelin Yong, Zhiyong Zhang, Yufu Chen, “Bäcklund transformation, nonlinear superposition formula and solutions of the Calogero equation”, Physics Letters A, 372:41 (2008), 6273  crossref  elib
  6. J Ramírez, J L Romero, “New classes of solutions for the Schwarzian Korteweg–de Vries equation in (2+1) dimensions”, J Phys A Math Theor, 40:16 (2007), 4351  crossref  mathscinet  zmath  adsnasa  isi
  7. Su Ting, Geng Xian-Guo, Ma Yun-Ling, “Wronskian Form of N-Soliton Solution for the (2+1)-Dimensional Breaking Soliton Equation”, Chinese Phys Lett, 24:2 (2007), 305  crossref  adsnasa
  8. J. Ramírez, J.L. Romero, M.S. Bruzón, M.L. Gandarias, “Multiple solutions for the Schwarzian Korteweg–de Vries equation in (2+1) dimensions”, Chaos, Solitons & Fractals, 32:2 (2007), 682  crossref  elib
  9. Yan-ze Peng, “New Types of Localized Coherent Structures in the Bogoyavlenskii-Schiff Equation”, Int J Theor Phys, 45:9 (2006), 1764  crossref  mathscinet  isi
  10. Tadashi Kobayashi, Kouichi Toda, “The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients”, SIGMA, 2 (2006), 063, 10 pp.  mathnet  crossref  mathscinet  zmath
Предыдущая
1
2
3
4
5
6
7
8
9
10
Следующая