51 citations to https://www.mathnet.ru/rus/im1185
-
П. И. Топалов, “Включение бутылок Клейна в теорию топологической классификации гамильтоновых систем”, УМН, 49:1(295) (1994), 227–228 ; P. I. Topalov, “The inclusion of the Klein bottles in the theory of the topological classification of Hamiltonian systems”, Russian Math. Surveys, 49:1 (1994), 248–250
-
Нгуен Тьен Зунг, Л. С. Полякова, Е. Н. Селиванова, “Топологическая классификация интегрируемых геодезических потоков с дополнительным квадратичным или линейным по импульсам интегралом на двумерных ориентируемых римановых многообразиях”, Функц. анализ и его прил., 27:3 (1993), 42–56 ; Nguyen Tien Zung, L. S. Polyakova, E. N. Selivanova, “Topological Classification of Integrable Geodesic Flows on Orientable Two-Dimensional Riemannian Manifolds with Additional Integral Depending on Momenta Linearly or Quadratically”, Funct. Anal. Appl., 27:3 (1993), 186–196
-
A. T. Fomenko, From Topology to Computation: Proceedings of the Smalefest, 1993, 561
-
Нгуен Тьен Зунг, “Сложность интегрируемых гамильтоновых систем на заданном изоэнергетическом трехмерном подмногообразии”, Матем. сб., 183:4 (1992), 87–117 ; Nguyen Tien Zung, “The complexity of integrable Hamiltonian systems on a prescribed three-dimensional constant-energy submanifold”, Russian Acad. Sci. Sb. Math., 75:2 (1993), 507–533
-
А. Т. Фоменко, “Топологический инвариант, грубо классифицирующий интегрируемые строго невырожденные гамильтонианы на четырехмерных симплектических многообразиях”, Функц. анализ и его прил., 25:4 (1991), 23–35 ; A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272
-
А. Т. Фоменко, “Теория бордизмов интегрируемых гамильтоновых невырожденных систем с двумя степенями свободы. Новый топологический инвариант многомерных интегрируемых систем”, Изв. АН СССР. Сер. матем., 55:4 (1991), 747–779 ; A. T. Fomenko, “A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higher-dimensional integrable systems”, Math. USSR-Izv., 39:1 (1992), 731–759
-
Jair Koiller, Mathematical Sciences Research Institute Publications, 20, Symplectic Geometry, Groupoids, and Integrable Systems, 1991, 183
-
А. Т. Фоменко, Х. Цишанг, “Топологический инвариант и критерий эквивалентности интегрируемых гамильтоновых систем с двумя степенями свободы”, Изв. АН СССР. Сер. матем., 54:3 (1990), 546–575 ; A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596
-
А. В. Болсинов, С. В. Матвеев, А. Т. Фоменко, “Топологическая классификация интегрируемых гамильтоновых систем с двумя степенями свободы. Список систем малой сложности”, УМН, 45:2(272) (1990), 49–77 ; A. V. Bolsinov, S. V. Matveev, A. T. Fomenko, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity”, Russian Math. Surveys, 45:2 (1990), 59–94
-
Нгуен Тьен Зунг, А. Т. Фоменко, “Топологическая классификация интегрируемых невырожденных гамильтонианов на изоэнергетической трехмерной сфере”, УМН, 45:6(276) (1990), 91–111 ; Nguyen Tien Zung, A. T. Fomenko, “Topological classification of integrable non-degenerate Hamiltonians on a constant energy three-dimensional sphere”, Russian Math. Surveys, 45:6 (1990), 109–135