15 citations to https://www.mathnet.ru/rus/fpm305
-
Poinas A., Delyon B., Lavancier F., “Mixing Properties and Central Limit Theorem For Associated Point Processes”, Bernoulli, 25:3 (2019), 1724–1754
-
Hadjila T., Ahmed A.S., “Estimation and Simulation of Conditional Hazard Function in the Quasi-Associated Framework When the Observations Are Linked Via a Functional Single-Index Structure”, Commun. Stat.-Theory Methods, 47:4 (2018), 816–838
-
В. П. Демичев, “Центральная предельная теорема для интегралов по случайным мерам”, Матем. заметки, 95:2 (2014), 209–221 ; V. P. Demichev, “A Central Limit Theorem for Integrals with Respect to Random Measures”, Math. Notes, 95:2 (2014), 193–203
-
В. П. Демичев, “Функциональная центральная предельная теорема для объемов экскурсионных множеств квази-ассоциированных случайных полей”, Вероятность и статистика. 19, Зап. научн. сем. ПОМИ, 412, ПОМИ, СПб., 2013, 109–120 ; V. P. Demichev, “Functional central limit theorem for excursion set volumes of quasi-associated random fields”, J. Math. Sci. (N. Y.), 204:1 (2015), 69–77
-
Bulinski A., Spodarev E., Timmermann F., “Central limit theorems for the excursion set volumes of weakly dependent random fields”, Bernoulli, 18:1 (2012), 100–118
-
Bulinski A., “Central Limit Theorem for Random Fields and Applications”, Advances in Data Analysis - Theory and Applications to Reliability and Inference, Data Mining, Bioinformatics, Lifetime Data, and Neural Networks, Statistics for Industry and Technology, 2010, 141–150
-
Shashkin A., “A Berry-Esseen Type Estimate for Dependent Systems on Transitive Graphs”, Advances in Data Analysis - Theory and Applications to Reliability and Inference, Data Mining, Bioinformatics, Lifetime Data, and Neural Networks, Statistics for Industry and Technology, 2010, 151–156
-
Н. Ю. Крыжановская, “Моментное неравенство для сумм мультииндексированных зависимых случайных величин”, Матем. заметки, 83:6 (2008), 843–856 ; N. Yu. Kryzhanovskaya, “Moment Inequality for Sums of Multi-Indexed Dependent Random Variables”, Math. Notes, 83:6 (2008), 770–782
-
Shashkin, A, “A strong invariance principle for positively or negatively associated random fields”, Statistics & Probability Letters, 78:14 (2008), 2121
-
А. П. Шашкин, “Закон повторного логарифма для ассоциированного случайного поля”, УМН, 61:2(368) (2006), 173–174 ; A. P. Shashkin, “The law of the iterated logarithm for an associated random field”, Russian Math. Surveys, 61:2 (2006), 359–361