10 citations to https://www.mathnet.ru/rus/fpm258
-
Andres S., Halberstam N., “Lower Gaussian Heat Kernel Bounds For the Random Conductance Model in a Degenerate Ergodic Environment”, Stoch. Process. Their Appl., 139 (2021), 212–228
-
Н. Ю. Крыжановская, “Моментное неравенство для сумм мультииндексированных зависимых случайных величин”, Матем. заметки, 83:6 (2008), 843–856 ; N. Yu. Kryzhanovskaya, “Moment Inequality for Sums of Multi-Indexed Dependent Random Variables”, Math. Notes, 83:6 (2008), 770–782
-
А. П. Шашкин, “Максимальное неравенство для слабо зависимого случайного поля”, Матем. заметки, 75:5 (2004), 773–782 ; A. P. Shashkin, “Maximal Inequality for Weakly Dependent Random Fields”, Math. Notes, 75:5 (2004), 717–725
-
А. В. Булинский, “Статистический вариант центральной предельной теоремы для векторных случайных полей”, Матем. заметки, 76:4 (2004), 490–501 ; A. V. Bulinski, “Statistical Version of the Central Limit Theorem for Vector-Valued Random Fields”, Math. Notes, 76:4 (2004), 455–464
-
Louhichi, S, “Moment inequalities for sums of certain dependent random variables”, Theory of Probability and Its Applications, 47:4 (2002), 649
-
Bakhtin, YY, “A functional central limit theorem for transformed solutions of the multidimensional Burgers equation with random initial data”, Theory of Probability and Its Applications, 46:3 (2001), 387
-
Bulinski, A, “Normal approximation for quasi-associated random fields”, Statistics & Probability Letters, 54:2 (2001), 215
-
Doukhan, P, “Functional estimation of a density under a new weak dependence condition”, Scandinavian Journal of Statistics, 28:2 (2001), 325
-
Bakhtin, YY, “A functional central limit theorem for transformed solutions to the multidimensional Burgers equation with random initial data”, Doklady Mathematics, 61:3 (2000), 417
-
Vronskii, MA, “Rate of convergence in the SLLN for associated sequences and fields”, Theory of Probability and Its Applications, 43:3 (1999), 449