73 citations to https://www.mathnet.ru/rus/fpm1121
-
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении четырехмерного многообразия. II. Потенциальные силовые поля”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 211, ВИНИТИ РАН, М., 2022, 29–40
-
М. В. Шамолин, “Системы с конечным числом степеней свободы с диссипацией: анализ и интегрируемость. I. Порождающая задача из динамики многомерного твердого тела, помещенного в неконсервативное поле сил”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 211, ВИНИТИ РАН, М., 2022, 41–74
-
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении четырехмерного многообразия. III. Силовые поля с диссипацией”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 212, ВИНИТИ РАН, М., 2022, 120–138
-
М. В. Шамолин, “Системы с конечным числом степеней свободы с диссипацией: анализ и интегрируемость. II. Общий класс динамических систем на касательном расслоении многомерной сферы”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 212, ВИНИТИ РАН, М., 2022, 139–148
-
М. В. Шамолин, “Системы с конечным числом степеней свободы с диссипацией: анализ и интегрируемость. III. Системы на касательных расслоениях гладких $n$-мерных многообразий”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 213, ВИНИТИ РАН, М., 2022, 96–109
-
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении гладкого конечномерного многообразия. I. Уравнения геодезических на касательном расслоении гладкого $n$-мерного многообразия”, Алгебра, геометрия и комбинаторика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 214, ВИНИТИ РАН, М., 2022, 82–106
-
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении гладкого конечномерного многообразия. II. Уравнения движения на касательном расслоении к $n$-мерному многообразию в потенциальном силовом поле”, Алгебра, геометрия и комбинаторика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 215, ВИНИТИ РАН, М., 2022, 81–94
-
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении гладкого конечномерного многообразия. III. Уравнения движения на касательном расслоении к $n$-мерному многообразию в силовом поле с переменной диссипацией”, Алгебра, геометрия, дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 216, ВИНИТИ РАН, М., 2022, 133–152
-
Maxim V. Shamolin, “Review of Cases of Integrability in Dynamics of Lower- and Multidimensional Rigid Body in a Nonconservative Field of Forces”, International Journal of Mathematics and Computers in Simulation, 16 (2022), 42
-
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении двумерного многообразия”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 202, ВИНИТИ РАН, М., 2021, 43–69