12 citations to https://www.mathnet.ru/rus/faa566
  1. Martin Schlichenmaier, Abel Symposia, 16, Geometry, Lie Theory and Applications, 2022, 279  crossref
  2. Martin Schlichenmaier, Algebra and Applications 1, 2021, 199  crossref
  3. Martin Schlichenmaier, Harmonic and Complex Analysis and its Applications, 2014, 325  crossref
  4. Ben Cox, Elizabeth Jurisich, “Realizations of the three-point Lie algebra sl(2,ℛ) ⊕ (Ωℛ∕dℛ)”, Pacific J. Math., 270:1 (2014), 27  crossref
  5. André Bueno, Ben Cox, Vyacheslav Futorny, “Free field realizations of the elliptic affine Lie algebra sl(2,R)⊕(ΩR/dR)”, Journal of Geometry and Physics, 59:9 (2009), 1258  crossref
  6. Ben Cox, “Realizations of the four point affine Lie algebrasl(2, R) ⊕(ΩR⁄dR)”, Pacific J. Math., 234:2 (2008), 261  crossref
  7. О. К. Шейнман, “Алгебры Кричевера–Новикова, их представления и приложения в геометрии и математической физике”, Совр. пробл. матем., 10, МИАН, М., 2007, 3–140  mathnet  crossref  zmath; O. K. Sheinman, “Krichever–Novikov Algebras, their Representations and Applications in Geometry and Mathematical Physics”, Proc. Steklov Inst. Math., 274, suppl. 1 (2011), S85–S161  crossref
  8. Schlichenmaier M., “A global operator approach to Wess-Zumino-Novikov-Witten models”, XXVI Workshop on Geometrical Methods in Physics, AIP Conference Proceedings, 956, 2007, 107–119  isi
  9. H W Braden, V A Dolgushev, M A Olshanetsky, A V Zotov, “Classicalr-matrices and the Feigin–Odesskii algebra via Hamiltonian and Poisson reductions”, J. Phys. A: Math. Gen., 36:25 (2003), 6979  crossref
  10. О. К. Шейнман, “Фермионная модель представлений аффинных алгебр Кричевера–Новикова”, Функц. анализ и его прил., 35:3 (2001), 60–72  mathnet  crossref  mathscinet  zmath; O. K. Sheinman, “The Fermion Model of Representations of Affine Krichever–Novikov Algebras”, Funct. Anal. Appl., 35:3 (2001), 209–219  crossref  isi  elib
1
2
Следующая