29 citations to https://www.mathnet.ru/rus/faa4
  1. Sergei A. Nazarov, Keijo M. Ruotsalainen, “Curved channels with constant cross sections may support trapped surface waves”, Z. Angew. Math. Phys., 74:4 (2023)  crossref
  2. С. А. Назаров, “Сохранение пороговых резонансов и отцепление собственных чисел от порога непрерывного спектра квантовых волноводов”, Матем. сб., 212:7 (2021), 84–121  mathnet  crossref  zmath  adsnasa; S. A. Nazarov, “The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides”, Sb. Math., 212:7 (2021), 965–1000  crossref  isi  elib
  3. С. А. Назаров, “Пороговые резонансы и виртуальные уровни в спектре цилиндрических и периодических волноводов”, Изв. РАН. Сер. матем., 84:6 (2020), 73–130  mathnet  crossref  mathscinet  zmath  adsnasa; S. A. Nazarov, “Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides”, Izv. Math., 84:6 (2020), 1105–1160  crossref  isi  elib
  4. Nazarov S.A., “Anomalies of Acoustic Wave Scattering Near the Cut-Off Points of Continuous Spectrum (a Review)”, Acoust. Phys., 66:5 (2020), 477–494  crossref  isi
  5. Ф. Л. Бахарев, С. А. Назаров, “Критерии отсутствия и наличия ограниченных решений на пороге непрерывного спектра в объединении квантовых волноводов”, Алгебра и анализ, 32:6 (2020), 1–23  mathnet; F. L. Bakharev, S. A. Nazarov, “Criteria for the absence and existence of bounded solutions at the threshold frequency in a junction of quantum waveguides”, St. Petersburg Math. J., 32:6 (2021), 955–973  crossref
  6. Chesnel L., Pagneux V., “From Zero Transmission to Trapped Modes in Waveguides”, J. Phys. A-Math. Theor., 52:16 (2019), 165304  crossref  mathscinet  isi  scopus
  7. С. А. Назаров, “Конечномерные версии оператора Стеклова–Пуанкаре для общих эллиптических краевых задач в областях с цилиндрическими и периодическими выходами на бесконечность”, Тр. ММО, 80, № 1, МЦНМО, М., 2019, 1–62  mathnet; S. A. Nazarov, “Finite-dimensional approximations to the Poincaré–Steklov operator for general elliptic boundary value problems in domains with cylindrical and periodic exits to infinity”, Trans. Moscow Math. Soc., 80 (2019), 1–51  crossref  elib
  8. Chesnel L., Pagneux V., “Simple Examples of Perfectly Invisible and Trapped Modes in Waveguides”, Q. J. Mech. Appl. Math., 71:3 (2018), 297–315  crossref  mathscinet  isi
  9. S. A. Nazarov, “Finite-Dimensional Approximations of the Steklov–Poincaré Operator for the Helmholtz Equation in Periodic Waveguides”, J Math Sci, 232:4 (2018), 461  crossref
  10. С. А. Назаров, “Почти стоячие волны в периодическом волноводе с резонатором и околопороговые собственные числа”, Алгебра и анализ, 28:3 (2016), 111–160  mathnet  mathscinet  elib; S. A. Nazarov, “Almost standing waves in a periodic waveguide with a resonator and near-threshold eigenvalues”, St. Petersburg Math. J., 28:3 (2017), 377–410  crossref  isi
1
2
3
Следующая