17 citations to https://www.mathnet.ru/rus/faa3171
  1. Taras A. Mel'nyk, Tiziana Durante, “Spectral problems with perturbed Steklov conditions in thick junctions with branched structure”, Applicable Analysis, 2024, 1  crossref
  2. С. А. Назаров, “Влияние условий Винклера–Стеклова на собственные колебания упругого весомого тела”, Уфимск. матем. журн., 16:1 (2024), 54–80  mathnet; S. A. Nazarov, “Influence of Winkler–Steklov conditions on natural oscillations of elastic weighty body”, Ufa Math. J., 16:1 (2024), 53–79  crossref
  3. С. А. Назаров, “Дальнодействие малых спектральных возмущений граничных условий Неймана для эллиптической системы дифференциальных уравнений в трехмерной области”, Матем. сб., 214:1 (2023), 61–112  mathnet  crossref  mathscinet  zmath  adsnasa; S. A. Nazarov, “‘Far interaction’ of small spectral perturbations of the Neumann boundary conditions for an elliptic system of differential equations in a three-dimensional domain”, Sb. Math., 214:1 (2023), 58–107  crossref  isi
  4. С. А. Назаров, “Об одномерных асимптотических моделях тонких решеток Неймана”, Сиб. матем. журн., 64:2 (2023), 362–382  mathnet  crossref  mathscinet; S. A. Nazarov, “On the one-dimensional asymptotic models of thin Neumann lattices”, Siberian Math. J., 64:2 (2023), 356–373  crossref
  5. С. А. Назаров, ““Паразитные” собственные значения спектральных задач для оператора Лапласа с краевыми условиями третьего типа”, Ж. вычисл. матем. и матем. физ., 63:7 (2023), 1128–1144  mathnet  crossref; S. A. Nazarov, “Parasitic eigenvalues of spectral problems for the Laplacian with third-type boundary conditions”, Comput. Math. Math. Phys., 63:7 (2023), 1237–1253  mathnet  crossref
  6. Sergei A. Nazarov, Keijo M. Ruotsalainen, “Curved channels with constant cross sections may support trapped surface waves”, Z. Angew. Math. Phys., 74:4 (2023)  crossref
  7. Nazarov S.A., Taskinen J., “Band-Gap Structure of the Spectrum of the Water-Wave Problem in a Shallow Canal With a Periodic Family of Deep Pools”, Rev. Mat. Complut., 2022  crossref  isi
  8. С. А. Назаров, “Асимптотический анализ спектра квантового волновода с широким “окном” Неймана в свете механики трещин”, Математические вопросы теории распространения волн. 52, Зап. научн. сем. ПОМИ, 516, ПОМИ, СПб., 2022, 176–237  mathnet
  9. Bucur D., Henrot A., Michetti M., “Asymptotic Behaviour of the Steklov Spectrum on Dumbbell Domains”, Commun. Partial Differ. Equ., 46:2 (2021), 362–393  crossref  mathscinet  isi
  10. Chechkina A.G., “On the Behavior of the Spectrum of a Perturbed Steklov Boundary Value Problem With a Weak Singularity”, Differ. Equ., 57:10 (2021), 1382–1395  crossref  mathscinet  isi
1
2
Следующая