14 citations to https://www.mathnet.ru/rus/faa2966
-
Nazarov S.A. Chesnel L., “Transmission and Trapping of Waves in An Acoustic Waveguide With Perforated Cross-Walls”, Fluid Dyn., 56:8 (2021), 1070–1093
-
Nazarov S.A., “Anomalies of Acoustic Wave Scattering Near the Cut-Off Points of Continuous Spectrum (a Review)”, Acoust. Phys., 66:5 (2020), 477–494
-
Mamani C.R., Verri A.A., “A Note on the Spectrum of the Neumann Laplacian in Thin Periodic Waveguides”, Colloq. Math., 162:2 (2020), 211–234
-
Nazarov S., Taskinen J., “Pathology of Essential Spectra of Elliptic Problems in Periodic Family of Beads Threaded By a Spoke Thinning At Infinity”, Rend. Lincei-Mat. Appl., 31:4 (2020), 939–969
-
Mamani C.R., Verri A.A., “Influence of Bounded States in the Neumann Laplacian in a Thin Waveguide”, Rocky Mt. J. Math., 48:6 (2018), 1993–2021
-
Nazarov S.A., Taskinen J., “Elastic and piezoelectric waveguides may have infinite number of gaps in their spectra”, C. R. Mec., 344:3 (2016), 190–194
-
С. А. Назаров, “Раскрытие лакуны вокруг заданной точки спектра цилиндрического волновода путем пологих периодических возмущений стенок”, Математические вопросы теории распространения волн. 43, Зап. научн. сем. ПОМИ, 422, ПОМИ, СПб., 2014, 90–130 ; S. A. Nazarov, “Gap opening around a given point of the spectrum of a cylindrical waveguide by means of gentle periodic perturbation of walls”, J. Math. Sci. (N. Y.), 206:3 (2015), 288–314
-
Д. И. Борисов, К. В. Панкрашкин, “Открытие лакун и расщепление краев зон для волноводов, соединенных периодической системой малых окон”, Матем. заметки, 93:5 (2013), 665–683 ; D. I. Borisov, K. V. Pankrashin, “Gap Opening and Split Band Edges in Waveguides Coupled by a Periodic System of Small Windows”, Math. Notes, 93:5 (2013), 660–675
-
Bakharev F.L., Nazarov S.A., Ruotsalainen K.M., “A Gap in the Spectrum of the Neumann-Laplacian on a Periodic Waveguide”, Appl. Anal., 92:9 (2013), 1889–1915
-
Borisov D., Pankrashkin K., “Quantum Waveguides with Small Periodic Perturbations: Gaps and Edges of Brillouin Zones”, J. Phys. A-Math. Theor., 46:23 (2013), 235203