384 citations to https://www.mathnet.ru/rus/faa2612
-
Swetlana Swarup, Vishal Vasan, Manas Kulkarni, “Provable bounds for the Korteweg–de Vries reduction in multi-component nonlinear Schrödinger equation”, J. Phys. A: Math. Theor., 53:13 (2020), 135206
-
Sylvain Carpentier, Alexander V Mikhailov, Jing Ping Wang, “PreHamiltonian and Hamiltonian operators for differential-difference equations”, Nonlinearity, 33:3 (2020), 915
-
Blagoje Oblak, “Orbital Bifurcations and Shoaling of Cnoidal Waves”, J. Math. Fluid Mech., 22:2 (2020)
-
Vincent Caudrelier, Matteo Stoppato, “A connection between the classical r-matrix formalism and covariant Hamiltonian field theory”, Journal of Geometry and Physics, 148 (2020), 103546
-
Ю. В. Бибик, С. П. Попов, “Солитонные решения одного обобщения связанной системы Вольтерра”, Ж. вычисл. матем. и матем. физ., 59:11 (2019), 1872–1882 ; Yu. V. Bibik, S. P. Popov, “Soliton solutions of a generalization of the coupled Volterra system”, Comput. Math. Math. Phys., 59:11 (2019), 1806–1815
-
Yan Jin-Liang, Zheng Liang-Hong, “A class of momentum-preserving finite difference schemes for the Korteweg–de Vries equation”, Ж. вычисл. матем. и матем. физ., 59:10 (2019), 1648–1648 ; Yan Jin-Liang, Zheng Liang-Hong, “A class of momentum-preserving finite difference schemes for the Korteweg–de Vries equation”, Comput. Math. Math. Phys., 59:10 (2019), 1582–1596
-
A. I. Dyachenko, S. A. Dyachenko, P. M. Lushnikov, V. E. Zakharov, “Dynamics of poles in two-dimensional hydrodynamics with free surface: new constants of motion”, J. Fluid Mech., 874 (2019), 891
-
A. I. Dyachenko, P. M. Lushnikov, V. E. Zakharov, “Non-canonical Hamiltonian structure and Poisson bracket for two-dimensional hydrodynamics with free surface”, J. Fluid Mech., 869 (2019), 526
-
Cheng Zhang, “Dressing the boundary: On soliton solutions of the nonlinear Schrödinger equation on the half‐line”, Stud Appl Math, 142:2 (2019), 190
-
Charles W Robson, Leone Di Mauro Villari, Fabio Biancalana, “Universal quantum Hawking evaporation of integrable two-dimensional solitons”, New J. Phys., 21:5 (2019), 053042