15 citations to https://www.mathnet.ru/rus/faa208
-
D.I. Borisov, D.M. Polyakov, “Uniform Spectral Asymptotics for a Schrödinger Operator on a Segment with Delta-Interaction”, Russ. J. Math. Phys., 31:2 (2024), 149
-
Д. И. Борисов, Д. М. Поляков, “Равномерная асимптотика собственных значений для модельного оператора Шрёдингера с малым сдвигом”, Уфимск. матем. журн., 16:3 (2024), 3–23 ; D. I. Borisov, D. M. Polyakov, “Uniform asymptotics for eigenvalues of model Schrödinger operator with small translation”, Ufa Math. J., 16:3 (2024), 1–20
-
Shafarevich A., “Quantization Conditions on Riemannian Surfaces and Spectral Series of Non-Selfadjoint Operators”, Formal and Analytic Solutions of Diff. Equations, Springer Proceedings in Mathematics & Statistics, 256, eds. Filipuk G., Lastra A., Michalik S., Springer, 2018, 177–187
-
А. М. Савчук, А. А. Шкаликов, “Спектральные свойства комплексного оператора Эйри на полуоси”, Функц. анализ и его прил., 51:1 (2017), 82–98 ; A. M. Savchuk, A. A. Shkalikov, “Spectral Properties of the Complex Airy Operator on the Half-Line”, Funct. Anal. Appl., 51:1 (2017), 66–79
-
Д. В. Нехаев, А. И. Шафаревич, “Квазиклассический предел спектра оператора Шрёдингера с комплексным периодическим потенциалом”, Матем. сб., 208:10 (2017), 126–148 ; D. V. Nekhaev, A. I. Shafarevich, “A quasiclassical limit of the spectrum of a Schrödinger operator with complex periodic potential”, Sb. Math., 208:10 (2017), 1535–1556
-
Х. К. Ишкин, “Критерий локализации спектра оператора Штурма–Лиувилля на кривой”, Алгебра и анализ, 28:1 (2016), 52–88 ; Kh. K. Ishkin, “Localization criterion for the spectrum of the Sturm–Liouville operator on a curve”, St. Petersburg Math. J., 28:1 (2017), 37–63
-
А. И. Есина, А. И. Шафаревич, “Асимптотика спектра и собственных функций оператора магнитной индукции на компактной двумерной поверхности вращения”, Матем. заметки, 95:3 (2014), 417–432 ; A. I. Esina, A. I. Shafarevich, “Asymptotics of the Spectrum and Eigenfunctions of the Magnetic Induction Operator on a Compact Two-Dimensional Surface of Revolution”, Math. Notes, 95:3 (2014), 374–387
-
Esina A.I., Shafarevich A.I., “Analogs of Bohr-Sommerfeld-Maslov Quantization Conditions on Riemann Surfaces and Spectral Series of Nonself-Adjoint Operators”, Russ. J. Math. Phys., 20:2 (2013), 172–181
-
Ortiz de Zarate J.M., Sengers J.V., “Hydrodynamic Fluctuations in Laminar Fluid Flow. I. Fluctuating Orr-Sommerfeld Equation”, J Stat Phys, 144:4 (2011), 774–792
-
А. И. Есина, А. И. Шафаревич, “Условия квантования на римановых поверхностях и квазиклассический спектр оператора Шрёдингера с комплексным потенциалом”, Матем. заметки, 88:2 (2010), 229–248 ; A. I. Esina, A. I. Shafarevich, “Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schrödinger Operator with Complex Potential”, Math. Notes, 88:2 (2010), 209–227