160 citations to https://www.mathnet.ru/rus/faa2063
-
Ferdinand Verhulst, Encyclopedia of Complexity and Systems Science, 2009, 6625
-
J. LI, Y. TIAN, W. ZHANG, S. F. MIAO, “BIFURCATION OF MULTIPLE LIMIT CYCLES FOR A ROTOR-ACTIVE MAGNETIC BEARINGS SYSTEM WITH TIME-VARYING STIFFNESS”, Int. J. Bifurcation Chaos, 18:03 (2008), 755
-
MAOAN HAN, JIAO JIANG, HUAIPING ZHU, “LIMIT CYCLE BIFURCATIONS IN NEAR-HAMILTONIAN SYSTEMS BY PERTURBING A NILPOTENT CENTER”, Int. J. Bifurcation Chaos, 18:10 (2008), 3013
-
Hongxian Zhou, Wei Xu, “Thirteen limit cycles for a class of cubic Hamiltonian system with higher-order perturbed terms”, Applied Mathematics and Computation, 204:2 (2008), 905
-
Jiao Jiang, Maoan Han, “Melnikov function and limit cycle bifurcation from a nilpotent center”, Bulletin des Sciences Mathématiques, 132:3 (2008), 182
-
Hongxian Zhou, Wei Xu, Xiaoshan Zhao, Bingchang Zhou, “Bifurcations of limit cycles for a perturbed quintic Hamiltonian system with four infinite singular points”, Applied Mathematics and Computation, 187:2 (2007), 686
-
J. Li, S.F. Miao, W. Zhang, “Analysis on bifurcations of multiple limit cycles for a parametrically and externally excited mechanical system”, Chaos, Solitons & Fractals, 31:4 (2007), 960
-
Xiaoxin Liao, Liqiu Wang, Pei Yu, Monograph Series on Nonlinear Science and Complexity, 5, Stability of Dynamical Systems, 2007, i
-
MAOAN HAN, GUANRONG CHEN, CHENGJUN SUN, “ON THE NUMBER OF LIMIT CYCLES IN NEAR-HAMILTONIAN POLYNOMIAL SYSTEMS”, Int. J. Bifurcation Chaos, 17:06 (2007), 2033
-
W.H. Yao, P. Yu, “Bifurcation of small limit cycles inZ5-equivariant planar vector fields of order 5”, Journal of Mathematical Analysis and Applications, 328:1 (2007), 400