63 citations to https://www.mathnet.ru/rus/faa2001
-
Friedrich Knop, Bernhard Krötz, Henrik Schlichtkrull, “The local structure theorem for real spherical varieties”, Compositio Math., 151:11 (2015), 2145
-
Mark Colarusso, Sam Evens, “Eigenvalue coincidences and K-orbits, I”, Journal of Algebra, 422 (2015), 611
-
Veronique Fischer, Genkai Zhang, “Degenerate principal series representations of $\mathrm{SO}(p+1,p)$ SO ( p + 1 , p )”, Monatsh Math, 176:1 (2015), 87
-
Dmitry A. Timashev, “On Quotients of Affine Spherical Varieties by Certain Unipotent Subgroups”, International Mathematics Research Notices, 2015:10 (2015), 2865
-
Hubert Rubenthaler, “Invariant differential operators on a class of multiplicity-free spaces”, Pacific J. Math., 270:2 (2014), 473
-
Gindikin S. Goodman R., “Restricted Roots and Restricted Form of the Weyl Dimension Formula for Spherical Varieties”, J. Lie Theory, 23:1 (2013), 257–311
-
Toshiyuki Kobayashi, Toshio Oshima, “Finite multiplicity theorems for induction and restriction”, Advances in Mathematics, 248 (2013), 921
-
А. В. Петухов, “Категории ограниченных $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- и $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-модулей”, Фундамент. и прикл. матем., 17:2 (2012), 183–199 ; A. V. Petukhov, “Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules”, J. Math. Sci., 186:4 (2012), 655–666
-
Р. С. Авдеев, “Аффинные сферические однородные пространства с хорошим фактором по максимальной унипотентной подгруппе”, Матем. сб., 203:11 (2012), 3–22 ; R. S. Avdeev, “Affine spherical homogeneous spaces with good quotient by a maximal unipotent subgroup”, Sb. Math., 203:11 (2012), 1535–1552
-
Р. С. Авдеев, Н. Е. Горфинкель, “Гармонический анализ на сферических однородных пространствах с разрешимым стабилизатором”, Функц. анализ и его прил., 46:3 (2012), 1–15 ; R. S. Avdeev, N. E. Gorfinkel, “Harmonic Analysis on Spherical Homogeneous Spaces with Solvable Stabilizer”, Funct. Anal. Appl., 46:3 (2012), 161–172