174 citations to https://www.mathnet.ru/rus/faa1983
-
Krzysztof Marciniak, Maciej Błaszak, “Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians”, SIGMA, 13 (2017), 077, 15 pp.
-
Jovanovic B. Jovanovic V., “Virtual billiards in pseudo-Euclidean spaces: discrete Hamiltonian and contact integrability”, Discret. Contin. Dyn. Syst., 37:10 (2017), 5163–5190
-
A. Kurov, G. Sardanashvily, “Superintegrable systems on Poisson manifolds”, J. Phys.: Conf. Ser., 804 (2017), 012025
-
Leo T. Butler, Lagrangian Mechanics, 2017
-
G. B. de Gracia, B. M. Pimentel, C. E. Valcárcel, “Hamilton-Jacobi analysis of the four-dimensional BF model with cosmological term”, Eur. Phys. J. Plus, 132:10 (2017)
-
P. A. Damianou, C. A. Evripidou, P. Kassotakis, P. Vanhaecke, “Integrable reductions of the Bogoyavlenskij-Itoh Lotka-Volterra systems”, Journal of Mathematical Physics, 58:3 (2017)
-
А. В. Беляев, “О представлении решений задачи о движении тяжелого твердого тела в случае Ковалевской в $\zeta$- и $\wp$-функциях Вейерштрасса и неинтегрируемости в квадратурах случая Гесса”, Матем. сб., 207:7 (2016), 3–28 ; A. V. Belyaev, “Representation of solutions to the problem of the motion of a heavy rigid body in the Kovalevskaya case in terms of Weierstrass $\zeta$- and $\wp$-functions and nonintegrability of the Hess case by quadratures”, Sb. Math., 207:7 (2016), 889–914
-
Larry Bates, Richard Cushman, “A Generalization of Nekhoroshev’s Theorem”, Regul. Chaotic Dyn., 21:6 (2016), 639–642
-
Sergio Grillo, Edith Padrón, “A Hamilton–Jacobi Theory for general dynamical systems and integrability by quadratures in symplectic and Poisson manifolds”, Journal of Geometry and Physics, 110 (2016), 101
-
J F Cariñena, F Falceto, J Grabowski, “Solvability of a Lie algebra of vector fields implies their integrability by quadratures”, J. Phys. A: Math. Theor., 49:42 (2016), 425202