102 citations to https://www.mathnet.ru/rus/faa1969
  1. Pierre Gaillard, “Rational Solutions to the KPI Equation as Multi-lumps with a One Degree of Summation”, Int. J. Appl. Comput. Math, 10:3 (2024)  crossref
  2. Yong Liu, Juncheng Wei, Wen Yang, “Uniqueness of lump solution to the KP‐I equation”, Proceedings of London Math Soc, 129:1 (2024)  crossref
  3. А. В. Забродин, “Об интегрируемости деформированной системы Руйсенарса–Шнайдера”, УМН, 78:2(470) (2023), 149–188  mathnet  crossref  mathscinet  zmath  adsnasa; A. V. Zabrodin, “On integrability of the deformed Ruijsenaars–Schneider system”, Russian Math. Surveys, 78:2 (2023), 349–386  crossref  isi
  4. I. Krichever, A. Zabrodin, “Monodromy free linear equations and many-body systems”, Lett. Math. Phys., 113 (2023), 75–36  mathnet  crossref
  5. Emma Previato, Sonia L. Rueda, Maria-Angeles Zurro, “Burchnall–Chaundy polynomials for matrix ODOs and Picard–Vessiot Theory”, Physica D: Nonlinear Phenomena, 453 (2023), 133811  crossref
  6. Zhao Zhang, Xiangyu Yang, Biao Li, Qi Guo, Yury Stepanyants, “Multi-lump formations from lump chains and plane solitons in the KP1 equation”, Nonlinear Dyn, 111:2 (2023), 1625  crossref
  7. V. Prokofev, A. Zabrodin, “Elliptic Solutions of the Toda Lattice with Constraint of Type B and Deformed Ruijsenaars–Schneider System”, Math Phys Anal Geom, 26:3 (2023)  crossref
  8. А. В. Забродин, “Эллиптические семейства решений иерархии Тоды со связью”, ТМФ, 213:1 (2022), 57–64  mathnet  crossref  mathscinet  adsnasa; A. V. Zabrodin, “Elliptic families of solutions of the constrained Toda hierarchy”, Theoret. and Math. Phys., 213:1 (2022), 1362–1368  crossref
  9. A. Zabrodin, A. Zotov, “Field analogue of the Ruijsenaars–Schneider model”, JHEP, 2022:7 (2022), 23–51  mathnet  crossref  scopus
  10. Sarbarish Chakravarty, Michael Zowada, “Dynamics of KPI lumps”, J. Phys. A: Math. Theor., 55:19 (2022), 195701  crossref
1
2
3
4
11
Следующая