55 citations to https://www.mathnet.ru/rus/faa1150
  1. Славина Н.С., “Классификация семейства систем ковалевской–яхьи с точностью до лиувиллевой эквивалентности”, Доклады академии наук, 452:3 (2013), 252–252  crossref  mathscinet  zmath  elib
  2. С. С. Николаенко, “Число связных компонент в прообразе регулярного значения отображения момента для геодезического потока эллипсоида”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2013, № 5, 29–34  mathnet  mathscinet; S. S. Nikolaenko, “The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid”, Moscow University Mathematics Bulletin, 68:5 (2013), 241–245  crossref
  3. Д. Б. Зотьев, “Инварианты Фоменко–Цишанга интегрируемых систем с симплектическими особенностями”, Изв. вузов. Матем., 2012, № 1, 22–30  mathnet  mathscinet; D. B. Zot'ev, “Fomenko–Zieschang invariants of integrable systems with symplectic singularities”, Russian Math. (Iz. VUZ), 56:1 (2012), 19–26  crossref
  4. Н. С. Логачева, “Классификация невырожденных положений равновесия и вырожденных одномерных орбит интегрируемой системы Ковалевской–Яхьи”, Матем. сб., 203:1 (2012), 31–60  mathnet  crossref  mathscinet  zmath  adsnasa  elib; N. S. Logacheva, “Classification of nondegenerate equilibria and degenerate 1-dimensional orbits of the Kovalevskaya-Yehia integrable system”, Sb. Math., 203:1 (2012), 28–59  crossref  isi
  5. П. П. Андреянов, К. Е. Душин, “Бифуркационные множества в задаче Ковалевской–Яхьи”, Матем. сб., 203:4 (2012), 3–46  mathnet  crossref  mathscinet  zmath  adsnasa  elib; P. P. Andreyanov, K. E. Dushin, “Bifurcation sets in the Kovalevskaya-Yehia problem”, Sb. Math., 203:4 (2012), 459–499  crossref  isi
  6. О. А. Загрядский, Е. А. Кудрявцева, Д. А. Федосеев, “Обобщение теоремы Бертрана на поверхности вращения”, Матем. сб., 203:8 (2012), 39–78  mathnet  crossref  mathscinet  zmath  elib; O. A. Zagryadskii, E. A. Kudryavtseva, D. A. Fedoseev, “A generalization of Bertrand's theorem to surfaces of revolution”, Sb. Math., 203:8 (2012), 1112–1150  crossref  isi
  7. Fomenko A.T., Konyaev A.Yu., “New Approach to Symmetries and Singularities in Integrable Hamiltonian Systems”, Topology Appl., 159:7, SI (2012), 1964–1975  crossref  isi
  8. Козлов И.К., Ратью Т.С., “Бифуркационная диаграмма для случая ковалевской на алгебре ли so(4)”, Доклады академии наук, 447:5 (2012), 486–486  elib
  9. Е. О. Кантонистова, “Целочисленные решетки переменных действие для обобщенного случая Лагранжа”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2012, № 1, 54–58  mathnet  mathscinet; E. O. Kantonistova, “Integer lattices of the action variables for the generalized Lagrange case”, Moscow University Mathematics Bulletin, 67:1 (2012), 36–40  crossref
  10. М. П. Харламов, П. Е. Рябов, “Диаграммы Смейла–Фоменко и грубые инварианты случая Ковалевской–Яхья”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2011, № 4, 40–59  mathnet
Предыдущая
1
2
3
4
5
6
Следующая