12 citations to https://www.mathnet.ru/rus/faa109
-
Dubrovsky V.G., Topovsky V A., “Multi-Soliton Solutions of Kp Equation With Integrable Boundary Via Partial Differential -Dressing Method”, Physica D, 428 (2021), 133025
-
Dubrovsky V.G., Topovsky V A., “Multi-Lump Solutions of Kp Equation With Integrable Boundary Via Partial Derivative-Dressing Method”, Physica D, 414 (2020), 132740
-
В. Л. Верещагин, “Явные решения граничных задач для $2+1$-мерных интегрируемых систем”, Матем. заметки, 93:3 (2013), 333–346 ; V. L. Vereshchagin, “Explicit Solutions of Boundary-Value Problems for $(2+1)$-Dimensional Integrable Systems”, Math. Notes, 93:3 (2013), 360–372
-
В. Л. Верещагин, “Интегрируемые граничные условия для $2+1$-мерных моделей математической физики”, ТМФ, 171:3 (2012), 430–437 ; V. L. Vereshchagin, “Integrable boundary conditions for $(2+1)$-dimensional models of mathematical physics”, Theoret. and Math. Phys., 171:3 (2012), 792–799
-
Rustem Garifullin, Ismagil Habibullin, Marina Yangubaeva, “Affine and finite Lie algebras and integrable Toda field equations on discrete space-time”, SIGMA, 8 (2012), 062, 33 pp.
-
Habibullin I., Zheltukhin K., Yangubaeva M., “Cartan matrices and integrable lattice Toda field equations”, Journal of Physics a-Mathematical and Theoretical, 44:46 (2011), 465202
-
В. Л. Верещагин, “Явные решения интегрируемой граничной задачи для двумерной цепочки Тоды”, ТМФ, 165:1 (2010), 25–31 ; V. L. Vereshchagin, “Explicit solutions of an integrable boundary value problem for the two-dimensional Toda lattice”, Theoret. and Math. Phys., 165:1 (2010), 1256–1261
-
Vereschagin V.L., “Integrable boundary problems for 2D Toda lattice”, Phys Lett A, 374:46 (2010), 4653–4657
-
Guerses M., Habibullin I., Zheltukhin K., “Integrable Boundary Value Problems for Elliptic Type Toda Lattice in a Disk”, J. Math. Phys., 48:10 (2007), 102702
-
И. Т. Хабибуллин, “Обрывы цепочки Тоды и проблема редукций”, ТМФ, 143:1 (2005), 33–48 ; I. T. Habibullin, “Truncations of Toda chains and the reduction problem”, Theoret. and Math. Phys., 143:1 (2005), 515–528