10 citations to https://www.mathnet.ru/rus/dm390
  1. Vatutin V., Dyakonova E., “Path to Survival For the Critical Branching Processes in a Random Environment”, J. Appl. Probab., 54:2 (2017), 588–602  crossref  mathscinet  isi  scopus
  2. В. И. Афанасьев, “Функциональная предельная теорема для остановленного случайного блуждания, достигающего высокого уровня”, Дискрет. матем., 28:3 (2016), 3–13  mathnet  crossref  mathscinet  elib; V. I. Afanasyev, “Functional limit theorem for a stopped random walk attaining a high level”, Discrete Math. Appl., 27:5 (2017), 269–276  crossref  isi
  3. В. И. Афанасьев, “Высокоуровневые докритические ветвящиеся процессы в случайной среде”, Ветвящиеся процессы, случайные блуждания и смежные вопросы, Сборник статей. Посвящается памяти члена-корреспондента РАН Бориса Александровича Севастьянова, Труды МИАН, 282, МАИК «Наука/Интерпериодика», М., 2013, 10–21  mathnet  crossref  mathscinet  elib; V. I. Afanasyev, “High level subcritical branching processes in a random environment”, Proc. Steklov Inst. Math., 282 (2013), 4–14  crossref  isi  elib
  4. В. И. Афанасьев, “Условная предельная теорема для максимума случайного блуждания в случайной среде”, Теория вероятн. и ее примен., 58:4 (2013), 625–647  mathnet  crossref  mathscinet  elib; V. I. Afanasyev, “Conditional limit theorem for maximum of random walk in a random environment”, Theory Probab. Appl., 58:4 (2014), 525–545  crossref  isi  elib
  5. В. И. Афанасьев, “Броуновский прыжок в высоту”, Теория вероятн. и ее примен., 55:2 (2010), 209–225  mathnet  crossref  mathscinet; V. I. Afanasyev, “Brownian high jump”, Theory Probab. Appl., 55:2 (2011), 183–197  crossref  isi
  6. Afanasyev V.I., “New Invariance Principles for Critical Branching Process in Random Environment”, Advances in Data Analysis - Theory and Applications to Reliability and Inference, Data Mining, Bioinformatics, Lifetime Data, and Neural Networks, Statistics for Industry and Technology, 2010, 105–115  mathscinet  isi
  7. В. И. Афанасьев, “Принцип инвариантности для критического ветвящегося процесса в случайной среде, достигающего высокого уровня”, Теория вероятн. и ее примен., 54:1 (2009), 3–17  mathnet  crossref  mathscinet  zmath; V. I. Afanasyev, “Invariance Principle for the Critical Branching Process in a Random Environment Attaining a High Level”, Theory Probab. Appl., 54:1 (2010), 1–13  crossref  isi
  8. В. И. Афанасьев, “Закон арксинуса для ветвящихся процессов в случайной среде и процессов Гальтона–Ватсона”, Теория вероятн. и ее примен., 51:3 (2006), 449–464  mathnet  crossref  mathscinet  zmath  elib; V. I. Afanasyev, “Arcsine law for branching processes in a random environment and Galton–Watson processes”, Theory Probab. Appl., 51:3 (2007), 401–414  crossref  isi
  9. В. И. Афанасьев, “О соотношении максимального и общего числа частиц в критическом ветвящемся процессе в случайной среде”, Теория вероятн. и ее примен., 48:3 (2003), 435–452  mathnet  crossref  mathscinet  zmath; V. I. Afanasyev, “On the ratio between the maximal and total numbers of individuals in a critical branching process in a random environment”, Theory Probab. Appl., 48:3 (2004), 384–399  crossref  isi
  10. В. И. Афанасьев, “О моменте достижения максимума критическим ветвящимся процессом в случайной среде и остановленным случайным блужданием”, Дискрет. матем., 12:2 (2000), 31–50  mathnet  crossref  mathscinet  zmath; V. I. Afanasyev, “On the time of attaining a maximum by a critical branching process in a random environment and by a stopped random walk”, Discrete Math. Appl., 10:3 (2000), 243–264