11 citations to https://www.mathnet.ru/rus/de8368
  1. В. А. Павленко, “Решения аналогов временны́х уравнений Шредингера, соответствующих паре гамильтоновых систем $H^{3+2}$”, ТМФ, 212:3 (2022), 340–353  mathnet  crossref  mathscinet  adsnasa; V. A. Pavlenko, “Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of $H^{3+2}$ Hamiltonian systems”, Theoret. and Math. Phys., 212:3 (2022), 1181–1192  crossref
  2. В. В. Цегельник, “О свойствах решений двух дифференциальных уравнений второго порядка со свойством Пенлеве”, ТМФ, 206:3 (2021), 361–367  mathnet  crossref  mathscinet  adsnasa; V. V. Tsegel'nik, “Properties of solutions of two second-order differential equations with the Painlevé property”, Theoret. and Math. Phys., 206:3 (2021), 315–320  crossref  isi
  3. В. А. Павленко, Б. И. Сулейманов, “Решения аналогов временных уравнений Шредингера, определяемых изомонодромной гамильтоновой системой $H^{2+1+1+1}$”, Уфимск. матем. журн., 10:4 (2018), 92–102  mathnet; V. A. Pavlenko, B. I. Suleimanov, “Solutions to analogues of non-stationary Schrödinger equations defined by isomonodromic Hamilton system $H^{2+1+1+1}$”, Ufa Math. J., 10:4 (2018), 92–102  crossref  isi
  4. Д. П. Новиков, Б. И. Сулейманов, ““Квантования” изомонодромной гамильтоновой системы Гарнье с двумя степенями свободы”, ТМФ, 187:1 (2016), 39–57  mathnet  crossref  mathscinet  adsnasa  elib; D. P. Novikov, B. I. Suleimanov, ““Quantization” of an isomonodromic Hamiltonian Garnier system with two degrees of freedom”, Theoret. and Math. Phys., 187:1 (2016), 479–496  crossref  isi
  5. Б. И. Сулейманов, “Квантовые аспекты интегрируемости третьего уравнения Пенлеве и временное уравнение Шредингера с потенциалом Морса”, Уфимск. матем. журн., 8:3 (2016), 141–159  mathnet  mathscinet  elib; B. I. Suleimanov, “Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with the Morse potential”, Ufa Math. J., 8:3 (2016), 136–154  crossref  isi
  6. Б. И. Сулейманов, “«Квантования» высших гамильтоновых аналогов уравнений Пенлеве I и II с двумя степенями свободы”, Функц. анализ и его прил., 48:3 (2014), 52–62  mathnet  crossref  mathscinet  zmath  elib; B. I. Suleimanov, ““Quantizations” of Higher Hamiltonian Analogues of the Painlevé I and Painlevé II Equations with Two Degrees of Freedom”, Funct. Anal. Appl., 48:3 (2014), 198–207  crossref  isi  elib
  7. А. М. Левин, М. А. Ольшанецкий, А. В. Зотов, “Классификация изомонодромных задач на эллиптических кривых”, УМН, 69:1(415) (2014), 39–124  mathnet  crossref  mathscinet  zmath  adsnasa  elib; A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Classification of isomonodromy problems on elliptic curves”, Russian Math. Surveys, 69:1 (2014), 35–118  crossref  isi  elib
  8. А. В. Зотов, А. В. Смирнов, “Модификации расслоений, эллиптические интегрируемые системы и связанные задачи”, ТМФ, 177:1 (2013), 3–67  mathnet  crossref  mathscinet  zmath  adsnasa  elib; A. V. Zotov, A. V. Smirnov, “Modifications of bundles, elliptic integrable systems, and related problems”, Theoret. and Math. Phys., 177:1 (2013), 1281–1338  crossref  isi  elib
  9. Б. И. Сулейманов, ““Квантовая” линеаризация уравнений Пенлеве как компонента их $L,A$ пар”, Уфимск. матем. журн., 4:2 (2012), 127–135  mathnet
  10. Д. П. Новиков, “О системе Шлезингера с матрицами размера $2\times2$ и уравнении Белавина–Полякова–Замолодчикова”, ТМФ, 161:2 (2009), 191–203  mathnet  crossref  mathscinet  zmath; D. P. Novikov, “The $2{\times}2$ matrix Schlesinger system and the Belavin–Polyakov–Zamolodchikov system”, Theoret. and Math. Phys., 161:2 (2009), 1485–1496  crossref  isi  elib
1
2
Следующая