27 citations to https://www.mathnet.ru/rus/danma140
-
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении трехмерного многообразия”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 205, ВИНИТИ РАН, М., 2022, 22–54
-
М. В. Шамолин, “Системы с четырьмя степенями свободы с диссипацией: анализ и интегрируемость”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 205, ВИНИТИ РАН, М., 2022, 55–94
-
М. В. Шамолин, “Системы с пятью степенями свободы с диссипацией: анализ и интегрируемость. I. Порождающая задача из динамики многомерного твердого тела, помещенного в неконсервативное поле сил”, Материалы Воронежской международной весенней математической школы «Современные методы теории краевых задач. Понтрягинские чтения–XXXII», Воронеж, 3–9 мая 2021 г. Часть 1, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 208, ВИНИТИ РАН, М., 2022, 91–121
-
М. В. Шамолин, “Системы с пятью степенями свободы с диссипацией: анализ и интегрируемость. II. Динамические системы на касательных расслоениях”, Материалы Воронежской международной весенней математической школы «Современные методы теории краевых задач. Понтрягинские чтения–XXXII», Воронеж, 3–9 мая 2021 г. Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 209, ВИНИТИ РАН, М., 2022, 88–107
-
М. В. Шамолин, “Некоторые тензорные инварианты геодезических, потенциальных и диссипативных систем на касательном расслоении двумерного многообразия”, Материалы Воронежской международной весенней математической школы «Современные методы теории краевых задач. Понтрягинские чтения–XXXII», Воронеж, 3–9 мая 2021 г. Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 209, ВИНИТИ РАН, М., 2022, 108–116
-
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении четырехмерного многообразия. I. Уравнения геодезических”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 210, ВИНИТИ РАН, М., 2022, 77–95
-
М. В. Шамолин, “Некоторые тензорные инварианты геодезических, потенциальных и диссипативных систем на касательном расслоении трехмерного многообразия”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 210, ВИНИТИ РАН, М., 2022, 96–105
-
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении четырехмерного многообразия. II. Потенциальные силовые поля”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 211, ВИНИТИ РАН, М., 2022, 29–40
-
М. В. Шамолин, “Системы с конечным числом степеней свободы с диссипацией: анализ и интегрируемость. I. Порождающая задача из динамики многомерного твердого тела, помещенного в неконсервативное поле сил”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 211, ВИНИТИ РАН, М., 2022, 41–74
-
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении четырехмерного многообразия. III. Силовые поля с диссипацией”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 212, ВИНИТИ РАН, М., 2022, 120–138