61 citations to https://www.mathnet.ru/rus/dan9374
-
И. А. Тайманов, “Разрушающиеся решения модифицированного уравнения Веселова–Новикова и минимальные поверхности”, ТМФ, 182:2 (2015), 213–222 ; I. A. Taimanov, “Blowing up solutions of the modified Novikov–Veselov equation and
minimal surfaces”, Theoret. and Math. Phys., 182:2 (2015), 173–181
-
П. Г. Гриневич, А. Е. Миронов, С. П. Новиков, “О нерелятивистском двумерном чисто магнитном суперсимметричном операторе Паули”, УМН, 70:2(422) (2015), 109–140 ; P. G. Grinevich, A. E. Mironov, S. P. Novikov, “On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator”, Russian Math. Surveys, 70:2 (2015), 299–329
-
Б. О. Василевский, “Функция Грина дискретного конечнозонного при одной энергии двумерного оператора Шрёдингера на квад-графе”, Матем. заметки, 98:1 (2015), 27–43 ; B. O. Vasilevskii, “The Green Function of the Discrete Finite-Gap One-Energy Two-Dimensional Schrödinger Operator on the Quad Graph”, Math. Notes, 98:1 (2015), 38–52
-
Б. О. Василевский, “Достаточное условие несингулярности дискретного конечнозонного при одной энергии двумерного оператора Шрёдингера на квад-графе”, Функц. анализ и его прил., 49:3 (2015), 65–70 ; B. O. Vasilevskii, “A Sufficient Nonsingularity Condition for a Discrete Finite-Gap One-Energy Two-Dimensional Schrödinger Operator on the Quad-Graph”, Funct. Anal. Appl., 49:3 (2015), 210–213
-
А. В. Казейкина, “Отсутствие солитонов с достаточной алгебраической локализацией для уравнения Веселова–Новикова на ненулевом уровне энергии”, Функц. анализ и его прил., 48:1 (2014), 30–45 ; A. V. Kazeykina, “Absence of Solitons with Sufficient Algebraic Localization for the Novikov–Veselov Equation at Nonzero Energy”, Funct. Anal. Appl., 48:1 (2014), 24–35
-
А. В. Казейкина, “Отсутствие солитонов кондуктивного типа для уравнения Веселова–Новикова при нулевой энергии”, Функц. анализ и его прил., 47:1 (2013), 79–82 ; A. V. Kazeykina, “Absence of Conductivity-Type Solitons for the Novikov–Veselov Equation at Zero Energy”, Funct. Anal. Appl., 47:1 (2013), 64–66
-
Р. Г. Новиков, И. А. Тайманов, “Преобразование Мутара и двумерные многоточечные дельтаобразные потенциалы”, УМН, 68:5(413) (2013), 181–182 ; R. G. Novikov, I. A. Taimanov, “The Moutard transformation and two-dimensional multipoint delta-type potentials”, Russian Math. Surveys, 68:5 (2013), 957–959
-
И. А. Тайманов, С. П. Царев, “Фаддеевские собственные функции двумерных операторов Шредингера, полученные с помощью преобразования Мутара”, ТМФ, 176:3 (2013), 408–416 ; I. A. Taimanov, S. P. Tsarev, “Faddeev eigenfunctions for two-dimensional Schrödinger operators via the Moutard transformation”, Theoret. and Math. Phys., 176:3 (2013), 1176–1183
-
Б. О. Василевский, “Функция Грина пятиточечной дискретизации двумерного конечнозонного оператора Шрёдингера: случай четырех особых точек на спектральной кривой”, Сиб. матем. журн., 54:6 (2013), 1250–1262 ; B. O. Vasilevskiǐ, “The Green's function of a five-point discretization of a two-dimensional finite-gap Schrödinger operator: The case of four singular points on the spectral curve”, Siberian Math. J., 54:6 (2013), 994–1004
-
Е. Ш. Гутшабаш, “Преобразование Мутара и его приложения к некоторым задачам физики. I. Случай двух независимых переменных”, Вопросы квантовой теории поля и статистической физики. 22, Зап. научн. сем. ПОМИ, 398, ПОМИ, СПб., 2012, 100–124 ; E. Sh. Gutshabash, “Moutard transformation and its application to some physical problems. I. The case of two independent variables”, J. Math. Sci. (N. Y.), 192:1 (2013), 57–69