50 citations to https://www.mathnet.ru/rus/dan9334
  1. А. Г. Кудрявцев, “О двукратном преобразовании Мутара стационарного уравнения Шредингера с осевой симметрией”, Письма в ЖЭТФ, 119:7 (2024), 529–532  mathnet  crossref; A. G. Kudryavtsev, “On the twofold Moutard transformation of the stationary Schrгöinger equation with axial symmetry”, JETP Letters, 119:7 (2024), 534–537  crossref
  2. П. Г. Гриневич, П. М. Сантини, “Конечнозонный подход в периодической задаче Коши для $(2+1)$-мерных аномальных волн фокусирующего уравнения Дэви–Стюартсона 2”, УМН, 77:6(468) (2022), 77–108  mathnet  crossref  mathscinet  zmath  adsnasa; P. G. Grinevich, P. M. Santini, “The finite-gap method and the periodic Cauchy problem for $(2+1)$-dimensional anomalous waves for the focusing Davey–Stewartson $2$ equation”, Russian Math. Surveys, 77:6 (2022), 1029–1059  crossref  isi
  3. А. В. Ильина, И. М. Кричевер, Н. А. Некрасов, “Двумерные периодические операторы Шредингера, интегрируемые на «собственном» уровне энергии”, Функц. анализ и его прил., 53:1 (2019), 31–48  mathnet  crossref  mathscinet  elib
  4. А. Д. Агальцов, Р. Г. Новиков, “Примеры решения обратной задачи рассеяния и уравнений иерархии Веселова–Новикова по данным рассеяния точечных потенциалов”, УМН, 74:3(447) (2019), 3–16  mathnet  crossref  mathscinet  zmath  adsnasa  elib; A. D. Agaltsov, R. G. Novikov, “Examples of solution of the inverse scattering problem and the equations of the Novikov–Veselov hierarchy from the scattering data of point potentials”, Russian Math. Surveys, 74:3 (2019), 373–386  crossref  isi
  5. Р. Г. Новиков, И. А. Тайманов, “Преобразования Дарбу–Мутара и операторы Пуанкаре–Стеклова”, Топология и физика, Сборник статей. К 80-летию со дня рождения академика Сергея Петровича Новикова, Труды МИАН, 302, МАИК «Наука/Интерпериодика», М., 2018, 334–342  mathnet  crossref  mathscinet  elib; R. G. Novikov, I. A. Taimanov, “Darboux–Moutard transformations and Poincaré–Steklov operators”, Proc. Steklov Inst. Math., 302 (2018), 315–324  crossref  isi
  6. П. Г. Гриневич, С. П. Новиков, “Сингулярные солитоны и спектральная мероморфность”, УМН, 72:6(438) (2017), 113–138  mathnet  crossref  mathscinet  zmath  adsnasa  elib; P. G. Grinevich, S. P. Novikov, “Singular solitons and spectral meromorphy”, Russian Math. Surveys, 72:6 (2017), 1083–1107  crossref  isi
  7. А. Г. Кудрявцев, “Нелокальное преобразование Дарбу двумерного стационарного уравнения Шредингера и его связь с преобразованием Мутара”, ТМФ, 187:1 (2016), 12–20  mathnet  crossref  mathscinet  adsnasa  elib; A. G. Kudryavtsev, “Nonlocal Darboux transformation of the two-dimensional stationary Schrödinger equation and its relation to the Moutard transformation”, Theoret. and Math. Phys., 187:1 (2016), 455–462  crossref  isi
  8. В. Э. Адлер, Ю. Ю. Берест, В. М. Бухштабер, П. Г. Гриневич, Б. А. Дубровин, И. М. Кричевер, С. П. Новиков, А. Н. Сергеев, М. В. Фейгин, Д. Фельдер, Е. В. Ферапонтов, О. А. Чалых, П. И. Этингоф, “Александр Петрович Веселов (к шестидесятилетию со дня рождения)”, УМН, 71:6(432) (2016), 172–188  mathnet  crossref  mathscinet  zmath  adsnasa  elib; V. E. Adler, Yu. Yu. Berest, V. M. Buchstaber, P. G. Grinevich, B. A. Dubrovin, I. M. Krichever, S. P. Novikov, A. N. Sergeev, M. V. Feigin, J. Felder, E. V. Ferapontov, O. A. Chalykh, P. I. Etingof, “Alexander Petrovich Veselov (on his 60th birthday)”, Russian Math. Surveys, 71:6 (2016), 1159–1176  crossref  isi
  9. И. А. Тайманов, “Разрушающиеся решения модифицированного уравнения Веселова–Новикова и минимальные поверхности”, ТМФ, 182:2 (2015), 213–222  mathnet  crossref  mathscinet  adsnasa  elib; I. A. Taimanov, “Blowing up solutions of the modified Novikov–Veselov equation and minimal surfaces”, Theoret. and Math. Phys., 182:2 (2015), 173–181  crossref  isi
  10. П. Г. Гриневич, А. Е. Миронов, С. П. Новиков, “О нерелятивистском двумерном чисто магнитном суперсимметричном операторе Паули”, УМН, 70:2(422) (2015), 109–140  mathnet  crossref  mathscinet  zmath  adsnasa  elib; P. G. Grinevich, A. E. Mironov, S. P. Novikov, “On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator”, Russian Math. Surveys, 70:2 (2015), 299–329  crossref  isi  elib
1
2
3
4
5
Следующая