86 citations to https://www.mathnet.ru/rus/dan46101
-
И. Х. Сабитов, “Московское математическое общество и метрическая геометрия: от Петерсона до современных исследований”, Тр. ММО, 77, № 2, МЦНМО, М., 2016, 184–218 ; I. Kh. Sabitov, “The Moscow Mathematical Society and metric geometry: from Peterson to contemporary research”, Trans. Moscow Math. Soc., 77 (2016), 149–175
-
Б. А. Дубровин, С. А. Зыков, М. В. Павлов, “Слабо нелинейные гамильтоновы уравнения в частных производных и новый класс решений уравнений ассоциативности WDVV”, Функц. анализ и его прил., 45:4 (2011), 49–64 ; B. A. Dubrovin, S. A. Zykov, M. V. Pavlov, “Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations”, Funct. Anal. Appl., 45:4 (2011), 278–290
-
И. А. Тайманов, “Сингулярные спектральные кривые в конечнозонном интегрировании”, УМН, 66:1(397) (2011), 111–150 ; I. A. Taimanov, “Singular spectral curves in finite-gap integration”, Russian Math. Surveys, 66:1 (2011), 107–144
-
О. И. Мохов, “О согласованных метриках и диагонализуемости нелокально-бигамильтоновых систем гидродинамического типа”, ТМФ, 167:1 (2011), 3–22 ; O. I. Mokhov, “Compatible metrics and the diagonalizability of nonlocally bi-Hamiltonian systems of hydrodynamic type”, Theoret. and Math. Phys., 167:1 (2011), 403–420
-
О. И. Мохов, “Римановы инварианты полупростых нелокально-бигамильтоновых систем
гидродинамического типа и согласованные метрики”, УМН, 65:6(396) (2010), 189–190 ; O. I. Mokhov, “Riemann invariants of semisimple non-locally bi-Hamiltonian systems of hydrodynamic type and compatible metrics”, Russian Math. Surveys, 65:6 (2010), 1183–1185
-
О. И. Мохов, “Классификация неособых многомерных скобок Дубровина–Новикова”, Функц. анализ и его прил., 42:1 (2008), 39–52 ; O. I. Mokhov, “The Classification of Nonsingular Multidimensional Dubrovin–Novikov Brackets”, Funct. Anal. Appl., 42:1 (2008), 33–44
-
А. Я. Мальцев, “Лоренц-инвариантная деформация системы Уизема для нелинейного уравнения
Клейна–Гордона”, Функц. анализ и его прил., 42:2 (2008), 28–43 ; A. Ya. Maltsev, “The Lorentz-Invariant Deformation of the Whitham System for the Nonlinear Klein–Gordon Equation”, Funct. Anal. Appl., 42:2 (2008), 103–115
-
Victor D. Gershun, “Integrable String Models in Terms of Chiral Invariants of $\mathrm{SU}(n)$, $\mathrm{SO}(n)$,
$\mathrm{SP}(n)$ Groups”, SIGMA, 4 (2008), 041, 16 pp.
-
М. В. Павлов, “Интегрируемость егоровских систем гидродинамического типа”, ТМФ, 150:2 (2007), 263–285 ; M. V. Pavlov, “Integrability of the Egorov systems of hydrodynamic type”, Theoret. and Math. Phys., 150:2 (2007), 225–243
-
О. И. Мохов, “Нелокальные гамильтоновы операторы гидродинамического типа с плоскими метриками, интегрируемые иерархии и уравнения ассоциативности”, Функц. анализ и его прил., 40:1 (2006), 14–29 ; O. I. Mokhov, “Nonlocal Hamiltonian Operators of Hydrodynamic Type with Flat Metrics, Integrable Hierarchies, and the Associativity Equations”, Funct. Anal. Appl., 40:1 (2006), 11–23