24 citations to https://www.mathnet.ru/rus/dan44619
  1. А. Р. Минабутдинов, “Теорема существования предельных кривых для полиномиальных адических автоморфизмов”, Теория представлений, динамические системы, комбинаторные методы. XXVII, Зап. научн. сем. ПОМИ, 448, ПОМИ, СПб., 2016, 177–200  mathnet  mathscinet; A. R. Minabutdinov, “Limiting curves for polynomial adic systems”, J. Math. Sci. (N. Y.), 224:2 (2017), 286–303  crossref
  2. А. Р. Минабутдинов, “Случайные отклонения эргодических сумм в автоморфизме Паскаля для меры Лебега”, Теория представлений, динамические системы, комбинаторные методы. XXIV, Зап. научн. сем. ПОМИ, 432, ПОМИ, СПб., 2015, 224–260  mathnet; A. R. Minabutdinov, “Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure”, J. Math. Sci. (N. Y.), 209:6 (2015), 953–978  crossref
  3. П. Б. Затицкий, “О возможной скорости роста масштабирующей энтропийной последовательности”, Теория представлений, динамические системы, комбинаторные методы. XXV, Зап. научн. сем. ПОМИ, 436, ПОМИ, СПб., 2015, 136–166  mathnet  mathscinet; P. B. Zatitskiy, “On the possible growth rate of a scaling entropy sequence”, J. Math. Sci. (N. Y.), 215:6 (2016), 715–733  crossref
  4. А. А. Лодкин, А. Р. Минабутдинов, “Предельные кривые для автоморфизма Паскаля”, Теория представлений, динамические системы, комбинаторные методы. XXVI, Зап. научн. сем. ПОМИ, 437, ПОМИ, СПб., 2015, 145–183  mathnet  mathscinet; A. A. Lodkin, A. R. Minabutdinov, “Limiting curves for the Pascal adic transformation”, J. Math. Sci. (N. Y.), 216:1 (2016), 94–119  crossref
  5. А. Р. Минабутдинов, И. Е. Манаев, “Функция Крускала–Катоны, последовательность Конвея, кривая Такаги и автоморфизм Паскаля”, Теория представлений, динамические системы, комбинаторные методы. XXII, Зап. научн. сем. ПОМИ, 411, ПОМИ, СПб., 2013, 135–147  mathnet  mathscinet; A. R. Minabutdinov, I. E. Manaev, “The Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic”, J. Math. Sci. (N. Y.), 196:2 (2014), 192–198  crossref
  6. А. А. Лодкин, И. Е. Манаев, А. Р. Минабутдинов, “Реализация автоморфизма Паскаля в графе конкатенаций и функция $s_2(n)$”, Теория представлений, динамические системы, комбинаторные методы. XXI, Зап. научн. сем. ПОМИ, 403, ПОМИ, СПб., 2012, 95–102  mathnet  mathscinet; A. A. Lodkin, I. E. Manaev, A. R. Minabutdinov, “A realization of the Pascal automorphism in the concatenation graph, and the function $s_2(n)$”, J. Math. Sci. (N. Y.), 190:3 (2013), 459–463  crossref
  7. А. М. Вершик, “Масштабированная энтропия и автоморфизмы с чисто точечным спектром”, Алгебра и анализ, 23:1 (2011), 111–135  mathnet  mathscinet  zmath  elib; A. M. Vershik, “Scailing entropy and automorphisms with pure pointspectrum”, St. Petersburg Math. J., 23:1 (2012), 75–91  crossref  isi
  8. А. М. Вершик, “Автоморфизм Паскаля имеет непрерывный спектр”, Функц. анализ и его прил., 45:3 (2011), 16–33  mathnet  crossref  mathscinet  zmath  elib; A. M. Vershik, “The Pascal automorphism has a continuous spectrum”, Funct. Anal. Appl., 45:3 (2011), 173–186  crossref  isi  elib
  9. А. А. Лодкин, И. Е. Манаев, А. Р. Минабутдинов, “Асимптотика масштабированной энтропии автоморфизма Паскаля”, Теория представлений, динамические системы, комбинаторные методы. XVIII, Зап. научн. сем. ПОМИ, 378, ПОМИ, СПб., 2010, 58–72  mathnet; A. A. Lodkin, I. E. Manaev, A. R. Minabutdinov, “Asymptotic behavior of the scaling entropy of the Pascal adic transformation”, J. Math. Sci. (N. Y.), 174:1 (2011), 28–35  crossref
  10. А. М. Вершик, Б. Соломяк, “Адическая реализация преобразования Морса и продолжение его действия на соленоид”, Теория представлений, динамические системы, комбинаторные методы. XVI, Зап. научн. сем. ПОМИ, 360, ПОМИ, СПб., 2008, 70–90  mathnet  zmath  elib; A. M. Vershik, B. Solomyak, “The adic realization of the Morse transformation and the extension of its action to the solenoid”, J. Math. Sci. (N. Y.), 158:6 (2009), 809–818  crossref  elib
Предыдущая
1
2
3
Следующая