13 citations to https://www.mathnet.ru/rus/dan43752
  1. А. А. Васильева, “Поперечники весовых классов Соболева на области, удовлетворяющей условию Джона”, Ортогональные ряды, теория приближений и смежные вопросы, Сборник статей. К 60-летию со дня рождения академика Бориса Сергеевича Кашина, Труды МИАН, 280, МАИК «Наука/Интерпериодика», М., 2013, 97–125  mathnet  crossref  mathscinet  elib; A. A. Vasil'eva, “Widths of weighted Sobolev classes on a John domain”, Proc. Steklov Inst. Math., 280 (2013), 91–119  crossref  isi  elib
  2. Э. М. Галеев, “Поперечники функциональных классов и конечномерных множеств”, Владикавк. матем. журн., 13:2 (2011), 3–14  mathnet  elib
  3. А. А. Васильева, “Колмогоровские поперечники весовых классов Соболева на кубе”, Тр. ИММ УрО РАН, 16, № 4, 2010, 100–116  mathnet  elib
  4. Е. М. Скориков, “Информационный колмогоровский поперечник и некоторые точные неравенства между поперечниками”, Изв. РАН. Сер. матем., 71:3 (2007), 173–196  mathnet  crossref  mathscinet  zmath  elib; E. M. Skorikov, “The information Kolmogorov width and some exact inequalities between widths”, Izv. Math., 71:3 (2007), 603–627  crossref  isi  elib
  5. М. И. Дьяченко, “Некоторые проблемы теории кратных тригонометрических рядов”, УМН, 47:5(287) (1992), 97–162  mathnet  mathscinet  zmath  adsnasa; M. I. Dyachenko, “Some problems in the theory of multiple trigonometric series”, Russian Math. Surveys, 47:5 (1992), 103–171  crossref  isi
  6. Динь Зунг, “Приближение функций многих переменных на торе тригонометрическими полиномами”, Матем. сб., 131(173):2(10) (1986), 251–271  mathnet  mathscinet  zmath; Ðinh Dung, “Approximation by trigonometric polynomials of functions of several variables on the torus”, Math. USSR-Sb., 59:1 (1988), 247–267  crossref
  7. В. Н. Темляков, “Приближение периодических функций нескольких переменных билинейными формами”, Изв. АН СССР. Сер. матем., 50:1 (1986), 137–155  mathnet  mathscinet  zmath; V. N. Temlyakov, “Approximation of periodic functions of several variables by bilinear forms”, Math. USSR-Izv., 28:1 (1987), 133–150  crossref
  8. Э. М. Галеев, “Поперечники по Колмогорову классов периодических функций многих переменных $\widetilde W_p^{\overline\alpha}$ и $\widetilde H_p^{\overline\alpha}$ в пространстве $\widetilde L_q$”, Изв. АН СССР. Сер. матем., 49:5 (1985), 916–934  mathnet  mathscinet  zmath; È. M. Galeev, “Kolmogorov widths in the space $\widetilde L_q$ of the classes $\widetilde W_p^{\overline\alpha}$ and $\widetilde H_p^{\overline\alpha}$ of periodic functions of several variables”, Math. USSR-Izv., 27:2 (1986), 219–237  crossref
  9. В. Н. Темляков, “Приближение периодических функций нескольких переменных тригонометрическими полиномами и поперечники некоторых классов функций”, Изв. АН СССР. Сер. матем., 49:5 (1985), 986–1030  mathnet  mathscinet  zmath; V. N. Temlyakov, “Approximation of periodic functions of several variables by trigonometric polynomials, and widths of some classes of functions”, Math. USSR-Izv., 27:2 (1986), 285–322  crossref
  10. Динь Зунг, “О приближении классов периодических функций многих переменных”, УМН, 38:6(234) (1983), 111–112  mathnet  mathscinet  zmath; Ðinh Dung, “The approximation of classes of periodic functions of many variables”, Russian Math. Surveys, 38:6 (1983), 117–118  crossref  isi
1
2
Следующая