28 citations to https://www.mathnet.ru/rus/dan111
  1. М. В. Шамолин, “Инварианты однородных динамических систем произвольного нечетного порядка с диссипацией. I. Системы третьего порядка”, Материалы Воронежской международной весенней математической школы «Современные методы краевых задач. Понтрягинские чтения—XXXV», Воронеж, 26-30 апреля 2024 г. Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 236, ВИНИТИ РАН, M., 2024, 72–88  mathnet  crossref
  2. М. В. Шамолин, “Инварианты однородных динамических систем произвольного нечетного порядка с диссипацией. II. Системы пятого порядка”, Материалы Воронежской международной весенней математической школы «Современные методы краевых задач. Понтрягинские чтения—XXXV», Воронеж, 26-30 апреля 2024 г. Часть 3, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 237, ВИНИТИ РАН, M., 2024, 49–75  mathnet  crossref
  3. М. В. Шамолин, “Тензорные инварианты геодезических, потенциальных и диссипативных систем. I. Системы на касательных расслоениях двумерных многообразий”, Материалы Воронежской международной зимней математической школы «Современные методы теории функций и смежные проблемы», Воронеж, 27 января — 1 февраля 2023 г. Часть 1, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 227, ВИНИТИ РАН, М., 2023, 100–128  mathnet  crossref
  4. М. В. Шамолин, “Тензорные инварианты геодезических, потенциальных и диссипативных систем. II. Системы на касательных расслоениях трехмерных многообразий”, Материалы Воронежской международной зимней математической школы «Современные методы теории функций и смежные проблемы», Воронеж, 27 января — 1 февраля 2023 г. Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 228, ВИНИТИ РАН, М., 2023, 92–118  mathnet  crossref
  5. М. В. Шамолин, “Тензорные инварианты геодезических, потенциальных и диссипативных систем. III. Системы на касательных расслоениях четырехмерных многообразий”, Материалы Воронежской международной зимней математической школы «Современные методы теории функций и смежные проблемы», Воронеж, 27 января — 1 февраля 2023 г. Часть 3, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 229, ВИНИТИ РАН, М., 2023, 90–119  mathnet  crossref
  6. М. В. Шамолин, “Тензорные инварианты геодезических, потенциальных и диссипативных систем. IV. Системы на касательных расслоениях $n$-мерных многообразий”, Материалы Воронежской международной весенней математической школы «Современные методы краевых задач. Понтрягинские чтения—XXXIV», Воронеж, 3-9 мая 2023 г. Часть 1, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 230, ВИНИТИ РАН, М., 2023, 96–130  mathnet  crossref
  7. М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении трехмерного многообразия”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 205, ВИНИТИ РАН, М., 2022, 22–54  mathnet  crossref
  8. М. В. Шамолин, “Системы с четырьмя степенями свободы с диссипацией: анализ и интегрируемость”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 205, ВИНИТИ РАН, М., 2022, 55–94  mathnet  crossref
  9. М. В. Шамолин, “Системы с пятью степенями свободы с диссипацией: анализ и интегрируемость. I. Порождающая задача из динамики многомерного твердого тела, помещенного в неконсервативное поле сил”, Материалы Воронежской международной весенней математической школы «Современные методы теории краевых задач. Понтрягинские чтения–XXXII», Воронеж, 3–9 мая 2021 г.  Часть 1, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 208, ВИНИТИ РАН, М., 2022, 91–121  mathnet  crossref
  10. М. В. Шамолин, “Системы с пятью степенями свободы с диссипацией: анализ и интегрируемость. II. Динамические системы на касательных расслоениях”, Материалы Воронежской международной весенней математической школы «Современные методы теории краевых задач. Понтрягинские чтения–XXXII», Воронеж, 3–9 мая 2021 г.  Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 209, ВИНИТИ РАН, М., 2022, 88–107  mathnet  crossref
1
2
3
Следующая