16 citations to https://www.mathnet.ru/rus/cstm2
-
Г. А. Попов, Е. Б. Яровая, “Укрупнение состояний ветвящегося случайного блуждания по многомерной решетке”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2024, № 1, 54–64 [G. A. Popov, E. B. Yarovaya, “Aggregation of states of a branching random walk over multidimensional lattice”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 1, 54–64 ]
-
Г. А. Попов, Е. Б. Яровая, “Укрупнение состояний ветвящегося случайного блуждания по многомерной решетке”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2024, № 1, 54–64 ; G. A. Popov, E. B. Yarovaya, “Aggregation of states of a branching random walk over multidimensional lattice”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 79:1 (2024), 60–70
-
Elena Filichkina, Elena Yarovaya, “Branching Random Walks with One Particle Generation Center and Possible Absorption at Every Point”, Mathematics, 11:7 (2023), 1676
-
A. I. Rytova, “Harmonic Analysis of Branching Random Walks with Heavy Tails”, J Math Sci, 262:4 (2022), 514
-
Anastasiia Rytova, Elena Yarovaya, “Survival analysis of particle populations in branching random walks”, Communications in Statistics - Simulation and Computation, 50:10 (2021), 3031
-
А. А. Апарин, Г. А. Попов, Е. Б. Яровая, “О распределении времени пребывания случайного блуждания в точке многомерной решетки”, Теория вероятн. и ее примен., 66:4 (2021), 657–675 ; A. A. Aparin, G. A. Popov, E. B. Yarovaya, “On the sojourn time distribution of a random walk at a multidimensional lattice point”, Theory Probab. Appl., 66:4 (2022), 522–536
-
E. B. Yarovaya, Springer Proceedings in Mathematics & Statistics, 358, Operator Theory and Harmonic Analysis, 2021, 387
-
Ekaterina Vl. Bulinskaya, “Catalytic branching random walk with semi-exponential increments”, Mathematical Population Studies, 28:3 (2021), 123
-
E. Yarovaya, “Operator equations of branching random walks”, Methodol. Comput. Appl. Probab., 21:3 (2019), 1007–1021
-
E. Yarovaya, “Positive discrete spectrum of the evolutionary operator of supercritical branching walks with heavy tails”, Methodol. Comput. Appl. Probab., 19:4 (2017), 1151–1167