19 citations to https://www.mathnet.ru/rus/cmph3
-
Aditya Nema, Ananda G. Maity, Sergii Strelchuk, David Elkouss, “Noise is resource-contextual in quantum communication”, Phys. Rev. Research, 6:3 (2024)
-
A. S. Mokeev, “On the counting of quantum errors”, Lobachevskii J. Math., 43:7 (2022), 1720–1725
-
G. G. Amosov, A. S. Mokeev, A. N. Pechen, “On the construction of a quantum channel corresponding to non-commutative graph for a qubit interacting with quantum oscillator”, Lobachevskii J. Math., 42:10 (2021), 2280–2284
-
G. G. Amosov, A. S. Mokeev, A. N. Pechen, “Noncommutative graphs based on finite-infinite system couplings: Quantum error correction for a qubit coupled to a coherent field”, Phys. Rev. A, 103:4 (2021), 42407–17
-
Г. Г. Амосов, А. С. Мокеев, “О некоммутативных операторных графах, порожденных разложениями единицы”, Труды МИАН, 313 (2021), 14–22 ; G. G. Amosov, A. S. Mokeev, “On Noncommutative Operator Graphs Generated by Resolutions of Identity”, Proc. Steklov Inst. Math., 313 (2021), 8–16
-
G. G. Amosov, A. S. Mokeev, “On non-commutative operator graphs generated by reducible unitary representation of the Heisenberg–Weyl group”, Internat. J. Theoret. Phys., 60 (2021), 457–463
-
G. G. Amosov, “On inner geometry of noncommutative operator graphs”, Eur. Phys. J. Plus, 135 (2020), 865–6
-
Mizanur Rahaman, “A New Bound on Quantum Wielandt Inequality”, IEEE Trans. Inform. Theory, 66:1 (2020), 147
-
G. G. Amosov, A. Mokeev, “On errors generated by unitary dynamics of bipartite quantum systems”, Lobachevskii J. Math., 41:12 (2020), 2310–2315
-
Xin Wang, Runyao Duan, “Separation Between Quantum Lovász Number and Entanglement-Assisted Zero-Error Classical Capacity”, IEEE Trans. Inform. Theory, 64:3 (2018), 1454