37 citations to https://www.mathnet.ru/rus/cmfd17
-
J. Vukadinovic, E. Dedits, A.C. Poje, T. Schäfer, “Averaging and spectral properties for the 2D advection–diffusion equation in the semi-classical limit for vanishing diffusivity”, Physica D: Nonlinear Phenomena, 310 (2015), 1
-
Stefano Longhi, “Phase transitions in Wick-rotated PT-symmetric optics”, Annals of Physics, 360 (2015), 150
-
А. И. Есина, А. И. Шафаревич, “Асимптотика спектра и собственных функций оператора магнитной индукции на компактной двумерной поверхности вращения”, Матем. заметки, 95:3 (2014), 417–432 ; A. I. Esina, A. I. Shafarevich, “Asymptotics of the Spectrum and Eigenfunctions of the Magnetic Induction Operator on a Compact Two-Dimensional Surface of Revolution”, Math. Notes, 95:3 (2014), 374–387
-
Adler P.M., Malevich A.E., Mityushev V.V., “Nonlinear Correction to Darcy's Law for Channels with Wavy Walls”, Acta Mech., 224:8 (2013), 1823–1848
-
Lydia Peres Hari, Jacob Rubinstein, Peter Sternberg, “Kinematic and dynamic vortices in a thin film driven by an applied current and magnetic field”, Physica D: Nonlinear Phenomena, 261 (2013), 31
-
Попов Д.И., Утемесов Р.М., “Оценка правой границы спектра в задаче об устойчивости параллельного течения двухфазной жидкости”, Известия алтайского государственного университета, 2:1 (2012), 158–163
-
Ишкин Х.К., “Об условиях локализации предельного спектра модельного оператора, связанного с уравнением Орра–Зоммерфельда”, Доклады академии наук, 445:5 (2012), 506–506 ; Ishkin Kh.K., “Conditions for Localization of the Limit Spectrum of a Model Operator Associated with the Orr-Sommerfeld Equation”, Dokl. Math., 86:1 (2012), 549–552
-
Carl M. Bender, Hugh F. Jones, “Wentzel-Kramers-Brillouin analysis ofPT-symmetric Sturm-Liouville problems”, Phys. Rev. A, 85:5 (2012)
-
Raam Uzdin, Uwe Günther, Saar Rahav, Nimrod Moiseyev, “Time-dependent Hamiltonians with 100”, J. Phys. A: Math. Theor., 45:41 (2012), 415304
-
Carl M Bender, Hugh F Jones, “WKB analysis of $\mathcal P$\mathcal T$-symmetric Sturm–Liouville problems”, J. Phys. A: Math. Theor., 45:44 (2012), 444004