30 citations to https://www.mathnet.ru/rus/cma408
  1. Alexey Davydov, Alexander Plakhov, “Dynamics of a Pendulum in a Rarefied Flow”, Regul. Chaotic Dyn., 29:1 (2024), 134–142  mathnet  crossref
  2. Yury Selyutskiy, Andrei Holub, Ching-Huei Lin, Springer Proceedings in Mathematics & Statistics, 454, Perspectives in Dynamical Systems II — Numerical and Analytical Approaches, 2024, 563  crossref
  3. A. P. Golub, L. A. Klimina, B. Ya. Lokshin, Yu. D. Selyutskiy, “Autooscillations of a Multlink Aerodynamic Pendulum”, J. Comput. Syst. Sci. Int., 62:2 (2023), 280  crossref
  4. M. V. Shamolin, “Motion of a Rigid Body with Frontal Cone in a Resistive Medium: Qualitative Analysis and Integrability”, J Math Sci, 272:5 (2023), 703  crossref
  5. М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении трехмерного многообразия”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 205, ВИНИТИ РАН, М., 2022, 22–54  mathnet  crossref
  6. М. В. Шамолин, “Системы с четырьмя степенями свободы с диссипацией: анализ и интегрируемость”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 205, ВИНИТИ РАН, М., 2022, 55–94  mathnet  crossref
  7. М. В. Шамолин, “Системы с пятью степенями свободы с диссипацией: анализ и интегрируемость. I. Порождающая задача из динамики многомерного твердого тела, помещенного в неконсервативное поле сил”, Материалы Воронежской международной весенней математической школы «Современные методы теории краевых задач. Понтрягинские чтения–XXXII», Воронеж, 3–9 мая 2021 г.  Часть 1, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 208, ВИНИТИ РАН, М., 2022, 91–121  mathnet  crossref
  8. М. В. Шамолин, “Системы с пятью степенями свободы с диссипацией: анализ и интегрируемость. II. Динамические системы на касательных расслоениях”, Материалы Воронежской международной весенней математической школы «Современные методы теории краевых задач. Понтрягинские чтения–XXXII», Воронеж, 3–9 мая 2021 г.  Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 209, ВИНИТИ РАН, М., 2022, 88–107  mathnet  crossref
  9. М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении четырехмерного многообразия. I. Уравнения геодезических”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 210, ВИНИТИ РАН, М., 2022, 77–95  mathnet  crossref
  10. М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении четырехмерного многообразия. II. Потенциальные силовые поля”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 211, ВИНИТИ РАН, М., 2022, 29–40  mathnet  crossref
1
2
3
Следующая