12 citations to https://www.mathnet.ru/rus/cma148
-
Si Wu, Guodong Li, Wenxia Xu, Xiangliang Xu, Huiyan Zhong, “Modelling and dynamic analysis of a novel seven-dimensional Hamilton conservative hyperchaotic systems with wide range of parameter”, Phys. Scr., 98:5 (2023), 055218
-
Guoyuan Qi, Ting Gou, Jianbing Hu, Guanrong Chen, “Breaking of integrability and conservation leading to Hamiltonian chaotic system and its energy-based coexistence analysis”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 31:1 (2021)
-
Maxim V. Shamolin, “Cases of Integrability Which Correspond to the Motion of a Pendulum in the Three-dimensional Space”, WSEAS TRANSACTIONS ON APPLIED AND THEORETICAL MECHANICS, 16 (2021), 73
-
Maxim V. Shamolin, “Qualitative and Numerical Research of Body Motion in a Resisting Medium”, WSEAS TRANSACTIONS ON SYSTEMS, 20 (2021), 232
-
Guoyuan Qi, Jianbing Hu, Ze Wang, “Modeling of a Hamiltonian conservative chaotic system and its mechanism routes from periodic to quasiperiodic, chaos and strong chaos”, Applied Mathematical Modelling, 78 (2020), 350
-
Haiyun Bi, Guoyuan Qi, Jianbing Hu, Qiliang Wu, “Quantum-classical correspondence and mechanical analysis of a classical-quantum chaotic system*”, Chinese Phys. B, 29:2 (2020), 020502
-
Guoyuan Qi, Jianbing Hu, “Modelling of both energy and volume conservative chaotic systems and their mechanism analyses”, Communications in Nonlinear Science and Numerical Simulation, 84 (2020), 105171
-
Guoyuan Qi, “Modelings and mechanism analysis underlying both the 4D Euler equations and Hamiltonian conservative chaotic systems”, Nonlinear Dyn, 95:3 (2019), 2063
-
М. В. Шамолин, “Интегрируемые системы с диссипацией на касательных расслоениях к сферам размерностей $2$ и $3$”, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 145 (2018), 86–94 ; M. V. Shamolin, “Dissipative Integrable Systems on the Tangent Bundles of $2$- and $3$-Dimensional Spheres”, J. Math. Sci. (N. Y.), 245:4 (2020), 498–507
-
М. В. Шамолин, “Трансцендентные первые интегралы динамических систем на касательном расслоении к сфере”, Совр. матем. и ее приложения, 100 (2016), 58–75 ; M. V. Shamolin, “Transcendental first integrals of dynamical systems on the tangent bundle to the sphere”, Journal of Mathematical Sciences, 227:4 (2017), 442–460