12 citations to https://www.mathnet.ru/rus/cma148
  1. Si Wu, Guodong Li, Wenxia Xu, Xiangliang Xu, Huiyan Zhong, “Modelling and dynamic analysis of a novel seven-dimensional Hamilton conservative hyperchaotic systems with wide range of parameter”, Phys. Scr., 98:5 (2023), 055218  crossref
  2. Guoyuan Qi, Ting Gou, Jianbing Hu, Guanrong Chen, “Breaking of integrability and conservation leading to Hamiltonian chaotic system and its energy-based coexistence analysis”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 31:1 (2021)  crossref
  3. Maxim V. Shamolin, “Cases of Integrability Which Correspond to the Motion of a Pendulum in the Three-dimensional Space”, WSEAS TRANSACTIONS ON APPLIED AND THEORETICAL MECHANICS, 16 (2021), 73  crossref
  4. Maxim V. Shamolin, “Qualitative and Numerical Research of Body Motion in a Resisting Medium”, WSEAS TRANSACTIONS ON SYSTEMS, 20 (2021), 232  crossref
  5. Guoyuan Qi, Jianbing Hu, Ze Wang, “Modeling of a Hamiltonian conservative chaotic system and its mechanism routes from periodic to quasiperiodic, chaos and strong chaos”, Applied Mathematical Modelling, 78 (2020), 350  crossref
  6. Haiyun Bi, Guoyuan Qi, Jianbing Hu, Qiliang Wu, “Quantum-classical correspondence and mechanical analysis of a classical-quantum chaotic system*”, Chinese Phys. B, 29:2 (2020), 020502  crossref
  7. Guoyuan Qi, Jianbing Hu, “Modelling of both energy and volume conservative chaotic systems and their mechanism analyses”, Communications in Nonlinear Science and Numerical Simulation, 84 (2020), 105171  crossref
  8. Guoyuan Qi, “Modelings and mechanism analysis underlying both the 4D Euler equations and Hamiltonian conservative chaotic systems”, Nonlinear Dyn, 95:3 (2019), 2063  crossref
  9. М. В. Шамолин, “Интегрируемые системы с диссипацией на касательных расслоениях к сферам размерностей $2$ и $3$”, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 145 (2018), 86–94  mathnet; M. V. Shamolin, “Dissipative Integrable Systems on the Tangent Bundles of $2$- and $3$-Dimensional Spheres”, J. Math. Sci. (N. Y.), 245:4 (2020), 498–507  mathnet  crossref
  10. М. В. Шамолин, “Трансцендентные первые интегралы динамических систем на касательном расслоении к сфере”, Совр. матем. и ее приложения, 100 (2016), 58–75  mathnet; M. V. Shamolin, “Transcendental first integrals of dynamical systems on the tangent bundle to the sphere”, Journal of Mathematical Sciences, 227:4 (2017), 442–460  mathnet  crossref
1
2
Следующая