13 citations to https://www.mathnet.ru/rus/bern1
  1. Xiequan Fan, Qi-Man Shao, “Self-normalized Cramér type moderate deviations for martingales and applications”, Bernoulli, 31:1 (2025)  crossref
  2. Wei Xu, “Asymptotics for exponential functionals of random walks”, Stochastic Processes and their Applications, 165 (2023), 1  crossref
  3. Chunmao Huang, Chen Wang, Xiaoqiang Wang, “Moments and asymptotic properties for supercritical branching processes with immigration in random environments”, Stochastic Models, 39:1 (2023), 21  crossref
  4. Chunmao Huang, Chen Wang, Xiaoqiang Wang, “Moments and large deviations for supercritical branching processes with immigration in random environments”, Acta Math Sci, 42:1 (2022), 49  crossref
  5. В. А. Ватутин, Е. Е. Дьяконова, “Многотипные ветвящиеся процессы в случайной среде”, УМН, 76:6 (2021), 71–118  mathnet  crossref  isi  scopus; V. A. Vatutin, E. E. Dyakonova, “Multitype branching processes in random environment”, Russian Math. Surveys, 76:6 (2021), 1019–1063  mathnet  crossref
  6. Wei Xu, “Asymptotic results for heavy-tailed Lévy processes and their exponential functionals”, Bernoulli, 27:4 (2021)  crossref
  7. Doudou Li, Vladimir Vatutin, Mei Zhang, “Subcritical branching processes in random environment with immigration stopped at zero”, J. Theor. Probability, 34:2 (2021), 874–896  mathnet  crossref  isi  scopus
  8. François Robin, Anne Van Gorp, Amandine Véber, “The role of mode switching in a population of actin polymers with constraints”, J. Math. Biol., 82:3 (2021)  crossref
  9. В. А. Ватутин, Е. Е. Дьяконова, “Докритические ветвящиеся процессы в случайной среде с иммиграцией: выживание одного семейства”, Теория вероятн. и ее примен., 65:4 (2020), 671–692  mathnet  crossref  isi; V. A. Vatutin, E. E. D'yakonova, “Subcritical branching processes in random environment with immigration: Survival of a single family”, Theory Probab. Appl., 65:4 (2021), 527–544  mathnet  crossref
  10. Xiequan Fan, Haijuan Hu, Quansheng Liu, “Uniform Cramér moderate deviations and Berry-Esseen bounds for a supercritical branching process in a random environment”, Front. Math. China, 15:5 (2020), 891  crossref
1
2
Следующая