31 citations to https://www.mathnet.ru/rus/at3496
-
Fassbender H., Benner P., “Passivity Preserving Model Reduction via a Structured Lanczos Method”, 2006 IEEE Conference on Computer-Aided Control System Design, Vols 1 and 2, IEEE, 2006, 8–13
-
Barabanov N., Ortega R., “On the Solvability of Extended Riccati Equations”, IEEE Trans. Autom. Control, 49:4 (2004), 598–602
-
Barabanov N., Ortega R., “On the Solvability of Extended Riccati Equations”, 2004 43rd IEEE Conference on Decision and Control (CDC), Vols 1-5, IEEE Conference on Decision and Control, IEEE, 2004, 2723–2727
-
В. А. Бондарко, А. Л. Фрадков, “Необходимые и достаточные условия пассифицируемости линейных распределенных систем”, Автомат. и телемех., 2003, № 4, 3–17 ; V. A. Bondarko, A. L. Fradkov, “Necessary and Sufficient Conditions for the Passivicability of Linear Distributed Systems”, Autom. Remote Control, 64:4 (2003), 517–530
-
B. Т. Борухов, Д. М. Зеленяк, “Точное решение алгебраического уравнения Риккати для релаксационных систем с одним входом”, Автомат. и телемех., 2003, № 4, 18–29 ; V. T. Borukhov, D. M. Zelenyak, “Precise Solution of the Algebraic Riccati Equation for One-Input Relaxation Systems”, Autom. Remote Control, 64:4 (2003), 531–541
-
А. А. Милютин, “Об условиях неотрицательности интегральных квадратичных форм
с постоянными коэффициентами, определенных на полуоси”, Матем. сб., 193:4 (2002), 61–86 ; A. A. Milyutin, “Conditions for the non-negativity of integral quadratic forms with constant
coefficients on a half-axis”, Sb. Math., 193:4 (2002), 531–557
-
Pogromsky A., Santoboni G., Nijmeijer H., “Partial Synchronization: From Symmetry Towards Stability”, Physica D, 172:1-4 (2002), 65–87
-
Barabanov N., Ortega R., “Conditions for Solvability of Extended Algebraic Riccati Equations with Applications to Dissipativity Theory”, Eur. J. Control, 8:3 (2002), 251–264
-
Santoboni G., Pogromsky A., Nijmeijer H., “An Observer for Phase Synchronization of Chaos”, Phys. Lett. A, 291:4-5 (2001), 265–273
-
Collado J., Lozano R., Johansson R., “On Kalman-Yakubovich-Popov Lemma for Stabilizable Systems”, IEEE Trans. Autom. Control, 46:7 (2001), 1089–1093