25 citations to https://www.mathnet.ru/rus/aa864
-
Petrov V., Semenov N., “Hopf-Theoretic Approach to Motives of Twisted Flag Varieties”, Compos. Math., 157:5 (2021), PII S0010437X2100703X, 963–996
-
Kuku A., “Higher Algebraic K-Theory and Representations of Algebraic Groups”, Afr. Mat., 31:1, SI (2020), 129–141
-
Dewey E., “Characteristic Classes of Cameral Covers”, Transform. Groups, 24:1 (2019), 1–29
-
Gonzales R.P., “Localization in Equivariant Operational K-Theory and the Chang-Skjelbred Property”, Manuscr. Math., 153:3-4 (2017), 623–644
-
В. Ума, “Эквивариантная $K$-теория регулярных компактификаций: дальнейшее развитие”, Изв. РАН. Сер. матем., 80:2 (2016), 139–164 ; V. Uma, “Equivariant $K$-theory of regular compactifications: further developments”, Izv. Math., 80:2 (2016), 417–441
-
М. С. Якерсон, “Алгебраическая К-теория многообразий $\mathrm{SL_{2n}/Sp}_{2n}$, $\mathrm{E_6/F}_4$ и их скрученных форм”, Алгебра и анализ, 28:3 (2016), 174–189 ; M. S. Yakerson, “Algebraic K-theory of the varieties $\mathrm{SL_{2n}/Sp}_{2n}$, $\mathrm{E_6/F}_4$ and their twisted forms”, St. Petersburg Math. J., 28:3 (2017), 421–431
-
Joshua R., Krishna A., “Higher K-Theory of Toric Stacks”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 14:4 (2015), 1189–1229
-
Krishna A., “Riemann-Roch For Equivariant K-Theory”, Adv. Math., 262 (2014), 126–192
-
Uma V., “Equivariant K-Theory of Flag Varieties Revisited and Related Results”, Colloq. Math., 132:2 (2013), 151–175
-
Gharib S., Karu K., “Vector Bundles on Toric Varieties”, C. R. Math., 350:3-4 (2012), 209–212