6 citations to https://www.mathnet.ru/rus/aa1267
  1. Е. Н. Ломакина, М. Г. Насырова, “Оценки энтропийных чисел весовых операторов Харди, действующих из банаховых пространств в $q$-банаховы пространства”, Сиб. матем. журн., 60:4 (2019), 801–814  mathnet  crossref; E. N. Lomakina, M. G. Nasyrova, “Estimate for the entropy numbers of the weighted Hardy operators that act from Banach space to $q$-Banach space”, Siberian Math. J., 60:4 (2019), 624–635  crossref  isi  elib
  2. A. A. Vasil'eva, “Widths of weighted Sobolev classes with constraints $f(a)=\cdots= f^{(k-1)}(a)=f^{(k)}(b)=\cdots=f^{(r-1)}(b)=0$ and the spectra of nonlinear differential equations”, Russ. J. Math. Phys., 24:3 (2017), 376–398  crossref  mathscinet  zmath  isi  scopus
  3. A. A. Vasil'eva, “Embedding theorems for a weighted Sobolev class in the space $L_{q,v}$ with weights having a singularity at a point: case $v\notin L_q^1$”, Russ. J. Math. Phys., 23:3 (2016), 392–424  crossref  mathscinet  zmath  isi  scopus
  4. A. A. Vasil'eva, “Embeddings and widths of weighted Sobolev classes”, Eurasian Math. J., 6:3 (2015), 93–100  mathnet
  5. A. A. Vasil'eva, “Widths of weighted Sobolev classes on a John domain: strong singularity at a point”, Rev. Mat. Complut., 27:1 (2014), 167–212  crossref  mathscinet  zmath  isi  scopus
  6. A. A. Vasil'eva, “Kolmogorov and linear widths of the weighted Besov classes with singularity at the origin”, J. Approx. Theory, 167 (2013), 1–41  crossref  mathscinet  zmath  adsnasa  isi  scopus