7 citations to https://www.mathnet.ru/rus/aa1157
  1. Novotny A.A., Sokolowski J., Zochowski A., “Topological Derivatives of Shape Functionals. Part i: Theory in Singularly Perturbed Geometrical Domains”, J. Optim. Theory Appl., 180:2 (2019), 341–373  crossref  mathscinet  zmath  isi  scopus
  2. Freidin A.B., Kucher V.A., “Solvability of the Equivalent Inclusion Problem For An Ellipsoidal Inhomogeneity”, Math. Mech. Solids, 21:2, SI (2016), 255–262  crossref  mathscinet  zmath  isi  elib  scopus
  3. Leugering G., Nazarov S.A., “The Eshelby Theorem and Its Variants For Piezoelectric Media”, Arch. Ration. Mech. Anal., 215:3 (2015), 707–739  crossref  mathscinet  zmath  isi  scopus
  4. Schury F., Greifenstein J., Leugering G., Stingl M., “on the Efficient Solution of a Patch Problem With Multiple Elliptic Inclusions”, Optim. Eng., 16:1 (2015), 225–246  crossref  mathscinet  zmath  isi  elib  scopus
  5. Schneider M., Andrae H., “The Topological Gradient in Anisotropic Elasticity With An Eye Towards Lightweight Design”, Math. Meth. Appl. Sci., 37:11 (2014), 1624–1641  crossref  mathscinet  zmath  isi  elib  scopus
  6. Gryshchuk S., de Cristoforis M.L., “Simple Eigenvalues For the Steklov Problem in a Domain With a Small Hole. a Functional Analytic Approach”, Math. Meth. Appl. Sci., 37:12 (2014), 1755–1771  crossref  mathscinet  zmath  isi  elib  scopus
  7. Leugering G. Nazarov S. Schury F. Stingl M., “The Eshelby theorem and application to the optimization of an elastic patch”, SIAM J. Appl. Math., 72:2 (2012), 512–534  crossref  mathscinet  zmath  isi  elib  scopus