28 citations to 10.1016/j.jmaa.2020.124147 (Crossref Cited-By Service)
  1. Molla Basir Ahamed, “The sharp refined Bohr–Rogosinski inequalities for certain classes of harmonic mappings”, Complex Variables and Elliptic Equations, 69, № 4, 2024, 586  crossref
  2. Molla Basir Ahamed, Vasudevarao Allu, Himadri Halder, “Bohr radius for certain classes of close-to-convex harmonic mappings”, Anal.Math.Phys., 11, № 3, 2021, 111  crossref
  3. Vasudevarao Allu, Himadri Halder, “Bohr Phenomenon for Certain Close-to-Convex Analytic Functions”, Comput. Methods Funct. Theory, 22, № 3, 2022, 491  crossref
  4. Hidetaka Hamada, Tatsuhiro Honda, “Bohr Radius for Pluriharmonic Mappings in Separable Complex Hilbert Spaces”, Bull. Malays. Math. Sci. Soc., 47, № 2, 2024, 47  crossref
  5. Farit Gabidinovich Avkhadiev, Ilgiz Rifatovich Kayumov, Semen Rafailovich Nasyrov, “Ýêñòðåìàëüíûå ïðîáëåìû â ãåîìåòðè÷åñêîé òåîðèè ôóíêöèé”, Óñïåõè ìàòåìàòè÷åñêèõ íàóê, 78, № 2(470), 2023, 3  crossref
  6. S. Ponnusamy, E.S. Shmidt, V.V. Starkov, “The Bohr radius and its modifications for linearly invariant families of analytic functions”, Journal of Mathematical Analysis and Applications, 533, № 1, 2024, 128039  crossref
  7. Molla Basir Ahamed, Vasudevarao Allu, “Bohr phenomenon for certain classes of harmonic mappings”, Rocky Mountain J. Math., 52, № 4, 2022  crossref
  8. Gang Liu, Saminathan Ponnusamy, “Improved Bohr inequality for harmonic mappings”, Mathematische Nachrichten, 296, № 2, 2023, 716  crossref
  9. D. M. Khammatova, “Refinement of Powered Bohr Inequality”, Lobachevskii J Math, 43, № 10, 2022, 2954  crossref
  10. Vasudevarao Allu, Nirupam Ghosh, “Bohr type inequality for Cesáro and Bernardi integral operator on simply connected domain”, Proc Math Sci, 133, № 2, 2023, 22  crossref
1
2
3
Ñëåäóþùàÿ