- Sergei V. Shabanov, “Geometry of the physical phase space in quantum gauge systems”, Physics Reports, 326, № 1-3, 2000, 1
- A. PASHNEV, M. TSULAIA, “DESCRIPTION OF THE HIGHER MASSLESS IRREDUCIBLE INTEGER SPINS IN THE BRST APPROACH”, Mod. Phys. Lett. A, 13, № 23, 1998, 1853
- R. Rennie, “Geometry and topology of chiral anomalies in gauge theories”, Advances in Physics, 39, № 6, 1990, 617
- C. A. Linhares, H. J. Rothe, K. D. Rothe, “On the cancellation of anomalies in chiral gauge theories”, Phys. Rev. D, 35, № 8, 1987, 2501
- E. M. C. ABREU, A. C. R. MENDES, C. NEVES, W. OLIVEIRA, F. I. TAKAKURA, L. M. V. XAVIER, “THE DUAL EMBEDDING METHOD IN D = 3”, Mod. Phys. Lett. A, 23, № 11, 2008, 829
- C. Bizdadea, S.O. Saliu, “Extravariables in the BRST quantization of second-class constrained systems. Existence theorems”, Nuclear Physics B, 469, № 1-2, 1996, 302
- Ken-ichi Shizuya, “Fermionic representation of the Wess-Zumino term and the chiral Schwinger model”, Physics Letters B, 213, № 3, 1988, 298
- M. V. Manías, M. C. von Reichenbach, F. A. Schaposnik, M. Trobo, “Current algebra for chiral gauge theories”, Journal of Mathematical Physics, 28, № 7, 1987, 1632
- C. Wotzasek, C. M. Naón, “A study of the generalized Schwinger model in the Hamiltonian formulation”, Z. Phys. C - Particles and Fields, 46, № 3, 1990, 445
- A. S. VYTHEESWARAN, “HIDDEN SYMMETRIES IN SECOND-CLASS CONSTRAINED SYSTEMS: ARE NEW FIELDS NECESSARY?”, Int. J. Mod. Phys. A, 17, № 28, 2002, 4095