- M. I. Krivoruchenko, A. A. Raduta, Amand Faessler, “Quantum deformation of the Dirac bracket”, Phys. Rev. D, 73, № 2, 2006, 025008
- Alexander Alexandrovich Reshetnyak, Pavel Yurievich Moshin, “Gauge-Invariant Lagrangian Formulations for Mixed-Symmetry Higher-Spin Bosonic Fields in AdS Spaces”, Universe, 9, № 12, 2023, 495
- J. M. Pawlowski, “Gauss law operator algebra and double commutators in chiral gauge theories”, Phys. Rev. D, 57, № 2, 1998, 1193
- I. A. Bandos, A. A. Zheltukhin, “Covariant quantization of null supermembranes in four-dimensional spacetime”, Theor Math Phys, 88, № 3, 1991, 925
- S. A. Frolov, A. A. Slavnov, C. Sochichiu, “SO(N) invariant Wess-Zumino action and its quantization”, Theor Math Phys, 105, № 2, 1995, 1407
- C.E.M. Wagner, “Canonical quantization of nonabelian gauge theories in two dimensions”, Physics Letters B, 209, № 2-3, 1988, 300
- J. Alfaro, L. F. Urrutia, J. D. Vergara, Quantum Mechanics of Fundamental Systems 2, 1989, 1
- J. P. Bowes, R. Foot, R. R. Volkas, “Electric charge quantization from gauge invariance of a Lagrangian: A catalogue of baryon-number-violating scalar interactions”, Phys. Rev. D, 54, № 11, 1996, 6936
- Yan-Gang Miao, “Canonical quantization of the gauge-invariant version of the minimal chiral Schwinger model”, Nuov Cim A, 105, № 9, 1992, 1301
- Silviu-Constantin Sararu, “A first-class approach of higher derivative Maxwell–Chern–Simons–Proca model”, Eur. Phys. J. C, 75, № 11, 2015, 526