49 citations to 10.1016/S0375-9601(96)00922-X (Crossref Cited-By Service)
  1. E V Ferapontov, V S Novikov, I Roustemoglou, “Towards the classification of integrable differential–difference equations in 2 + 1 dimensions”, J. Phys. A: Math. Theor., 46, № 24, 2013, 245207  crossref
  2. I. T. Habibullin, M. N. Poptsova, “Integrable Two-Dimensional Lattices. Characteristic Lie Rings and Classification”, J Math Sci, 241, № 4, 2019, 396  crossref
  3. F Calogero, L F Di Cerbo, R Droghei, “On isochronous Bruschi–Ragnisco–Ruijsenaars–Toda lattices: equilibrium configurations, behaviour in their neighbourhood, diophantine relations and conjectures”, J. Phys. A: Math. Gen., 39, № 2, 2006, 313  crossref
  4. Ismagil T. Habibullin, Aigul R. Khakimova, Alfya U. Sakieva, “Miura-Type Transformations for Integrable Lattices in 3D”, Mathematics, 11, № 16, 2023, 3522  crossref
  5. D. K. Demskoi, “Integrals of open two-dimensional lattices”, Theor Math Phys, 163, № 1, 2010, 466  crossref
  6. Fuding Xie, Min Ji, Hong Zhao, “Some solutions of discrete sine-Gordon equation”, Chaos, Solitons & Fractals, 33, № 5, 2007, 1791  crossref
  7. T Skrypnyk, “New non-skew symmetric classicalr-matrices and ‘twisted’ quasigraded Lie algebras”, J. Phys. A: Math. Theor., 40, № 7, 2007, 1611  crossref
  8. V.E. Vekslerchik, “Functional representation of the negative DNLS hierarchy”, JNMP, 20, № 4, 2021, 495  crossref
  9. Ismagil Habibullin, “Characteristic Lie rings, finitely-generated modules and integrability conditions for (2 + 1)-dimensional lattices”, Phys. Scr., 87, № 6, 2013, 065005  crossref
  10. Yu Yaxuan, “Rational formal solutions of hybrid lattice equation”, Applied Mathematics and Computation, 186, № 1, 2007, 474  crossref
Предыдущая
1
2
3
4
5
Следующая