- Stanislav Opanasenko, Evgeny V. Ferapontov, “Linearizable Abel equations and the Gurevich–Pitaevskii problem”, Stud Appl Math, 150, № 3, 2023, 607
- TOM CLAEYS, “THE RIEMANN–HILBERT APPROACH TO OBTAIN CRITICAL ASYMPTOTICS FOR HAMILTONIAN PERTURBATIONS OF HYPERBOLIC AND ELLIPTIC SYSTEMS”, Random Matrices: Theory Appl., 01, № 01, 2012, 1130002
- A. V. Domrin, M. A. Shumkin, B. I. Suleimanov, “Meromorphy of solutions for a wide class of ordinary differential equations of Painlevé type”, Journal of Mathematical Physics, 63, № 2, 2022, 023501
- Tom Claeys, “Pole-free solutions of the first Painlevé hierarchy and non-generic critical behavior for the KdV equation”, Physica D: Nonlinear Phenomena, 241, № 23-24, 2012, 2226
- Булат Ирекович Сулейманов, Bulat Irekovich Suleimanov, “Квантования высших гамильтоновых аналогов уравнений Пенлеве I и II с двумя степенями свободы”, Функциональный анализ и его приложения, 48, № 3, 2014, 52
- Tamara Grava, Andrei Kapaev, Christian Klein, “On the Tritronquée Solutions of $\hbox {P}_{\mathrm{I}}^2$ P I 2 ”, Constr Approx, 41, № 3, 2015, 425
- T. Grava, C. Klein, “A numerical study of the small dispersion limit of the Korteweg–de Vries equation and asymptotic solutions”, Physica D: Nonlinear Phenomena, 241, № 23-24, 2012, 2246
- B. I. Suleimanov, “Asymptotics of the Gurevich-Pitaevskii universal special solution of the Korteweg-de Vries equation as |x| → ∞”, Proc. Steklov Inst. Math., 281, № S1, 2013, 137
- B. I. Suleimanov, ““Quantizations” of higher Hamiltonian analogues of the Painlevé I and Painlevé II equations with two degrees of freedom”, Funct Anal Its Appl, 48, № 3, 2014, 198
- Bulat Irekovich Suleimanov, Azamat Mavletovich Shavlukov, “Integrable Abel equation and asymptotics of symmetry solutions of Korteweg-de Vries equation”, Ufimsk. Mat. Zh., 13, № 2, 2021, 99