- Tatiana Aleksandrovna Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78, № 6, 2023, 1023

- Kirill Cherednichenko, Igor Velčić, Josip Žubrinić, “Operator-norm resolvent estimates for thin elastic periodically heterogeneous rods in moderate contrast”, Calc. Var., 62, № 5, 2023, 147

- T. A. Suslina, “Homogenization of the Neumann problem for higher order elliptic equations with periodic coefficients”, Complex Variables and Elliptic Equations, 63, № 7-8, 2018, 1185

- Yu. M. Meshkova, “On homogenization of the first initial-boundary value problem for periodic hyperbolic systems”, Applicable Analysis, 99, № 9, 2020, 1528

- N. N. Senik, “On Homogenization of Locally Periodic Elliptic and Parabolic Operators”, Funct Anal Its Appl, 54, № 1, 2020, 68

- Yao Xu, “Convergence rates in homogenization of parabolic systems with locally periodic coefficients”, Journal of Differential Equations, 367, 2023, 1

- Wei Wang, “Uniform Estimates of Resolvents in Homogenization Theory of Elliptic Systems”, 2023

- Weisheng Niu, “Reiterated homogenization of parabolic systems with several spatial and temporal scales”, Journal of Functional Analysis, 286, № 9, 2024, 110365

- Qing Meng, Weisheng Niu, “Homogenization of fundamental solutions for parabolic operators involving non-self-similar scales”, Annali di Matematica, 2024

- Yulia Mikhailovna Meshkova, Tatiana Aleksandrovna Suslina, “Усреднение задачи Дирихле для эллиптических и параболических систем с периодическими коэффициентами”, Функциональный анализ и его приложения, 51, № 3, 2017, 87
