- L. D. Lantsman, V. N. Pervushin, “Monopole vacuum in non-Abelian theories”, Phys. Atom. Nuclei, 66, № 7, 2003, 1384
- A. A. Slavnov, “Quantization of non-Abelian gauge fields”, Proc. Steklov Inst. Math., 289, № 1, 2015, 286
- Varouzhan Baluni, “Non-Abelian gauge theories of Fermi systems: Quantum-chromodynamic theory of highly condensed matter”, Phys. Rev. D, 17, № 8, 1978, 2092
- O. Babelon, C.-M. Viallet, “The geometrical interpretation of the Faddeev-Popov determinant”, Physics Letters B, 85, № 2-3, 1979, 246
- Alexandre Guay, “A partial elucidation of the gauge principle”, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 39, № 2, 2008, 346
- Hermès Bélusca-Maïto, Amon Ilakovac, Paul Kühler, Marija Mađor-Božinović, Dominik Stöckinger, Matthias Weißwange, “Introduction to Renormalization Theory and Chiral Gauge Theories in Dimensional Regularization with Non-Anticommuting γ5”, Symmetry, 15, № 3, 2023, 622
- W. Konetschny, W. Kummer, “Ghost-free non-Abelian gauge theory: renormalization and gauge-invariance”, Nuclear Physics B, 100, № 1, 1975, 106
- A. A. Slavnov, “Lorentz-invariant quantization of the Yang-Mills theory without Gribov ambiguity”, Proc. Steklov Inst. Math., 272, № 1, 2011, 235
- C. A. Hurst, Recent Developments in Mathematical Physics, 1987, 18
- Martin Schaden, Larry Spruch, “Infinity-free semiclassical evaluation of Casimir effects”, Phys. Rev. A, 58, № 2, 1998, 935