- Helmuth Hüffel, Gerald Kelnhofer, “Generalized Stochastic Quantization of Yang–Mills Theory”, Annals of Physics, 270, № 1, 1998, 231
- H. Nicolai, “Supersymmetry and functional integration measures”, Nuclear Physics B, 176, № 2, 1980, 419
- Koji Harada, Izumi Tsutsui, “On the path-integral quantization of anomalous gauge theories”, Physics Letters B, 183, № 3-4, 1987, 311
- Beverly K. Berger, Craig N. Vogeli, “Path-integral quantum cosmology. I. Vacuum Bianchi type I”, Phys. Rev. D, 32, № 10, 1985, 2477
- Jnanadeva Maharana, 208, Supersymmetry and Supergravity Nonperturbative QCD, 1984, 323
- Radu Constantinescu, Carmen Ionescu, “The Yang-Mills fields — from the gauge theory to the mechanical model”, Open Physics, 7, № 4, 2009
- Anton V. Sokolov, Andreas Ringwald, “Generic Axion Maxwell Equations: Path Integral Approach”, Annalen der Physik, 536, № 1, 2024, 2300112
- F. Di Renzo, L. Scorzato, “Numerical Stochastic Perturbation Theory. Convergence and features of the stochastic process. Computations at fixed (Landau) Gauge”, Nuclear Physics B - Proceedings Supplements, 83-84, 2000, 822
- N.K Falck, G Kramer, “Gauge invariance, anomalies, and the chiral Schwinger model”, Annals of Physics, 176, № 2, 1987, 330
- A. Cabo, M. Chaichian, D.Louis Martinez, P. Prešnajder, “An alternative derivation of the Faddeev-Popov path integral”, Physics Letters B, 258, № 1-2, 1991, 183