- Sandhya Jain, Arun Pal Singh, Megha Madan, Pankaj Jain, “BOUNDEDNESS OF DUNKL-HAUSDORFF OPERATOR FOR RADIALLY DECREASING FUNCTIONS AND MONOTONE WEIGHTS ON $\mathbb {R}^{n}$”, J Math Sci, 2024

- A. Gogatishvili, V. D. Stepanov, “Operators on cones of monotone functions”, Dokl. Math., 86, № 1, 2012, 562

- G. E. Shambilova, “The weighted inequalities for a certain class of quasilinear integral operators on the cone of monotone functions”, Sib Math J, 55, № 4, 2014, 745

- M. L. Goldman, “On equivalent criteria for the boundedness of Hardy type operators on the cone of decreasing functions”, Anal Math, 37, № 2, 2011, 83

- В.Д. Степанов, Г.Э. Шамбилова, “ОБ ОГРАНИЧЕННОСТИ КВАЗИЛИНЕЙНЫХ ИНТЕГРАЛЬНЫХ ОПЕРАТОРОВ ИТЕРАЦИОННОГО ТИПА С ЯДРАМИ ОЙНАРОВА НА КОНУСЕ МОНОТОННЫХ ФУНКЦИЙ”, Доклады Академии наук, № 1, 2017, 17

- Pankaj Jain, Arun Pal Singh, Monika Singh, Vladimir D. Stepanov, “Sawyer's duality principle for grand Lebesgue spaces”, Mathematische Nachrichten, 292, № 4, 2019, 841

- Luboš Pick, 13, Around the Research of Vladimir Maz'ya III, 2010, 279

- Amiran Gogatishvili, Martin Křepela, Luboš Pick, Filip Soudský, “Embeddings of Lorentz-type spaces involving weighted integral means”, Journal of Functional Analysis, 273, № 9, 2017, 2939

- Maria Johansson, 157, Inequalities and Applications, 2008, 97

- V. D. Stepanov, G. E. Shambilova, “Boundedness of quasilinear integral operators on the cone of monotone functions”, Sib Math J, 57, № 5, 2016, 884
