- S. V. Konyagin, E. D. Livshits, “On adaptive estimators in statistical learning theory”, Proc. Steklov Inst. Math., 260, № 1, 2008, 185
- Shaobo Lin, Jinshan Zeng, Jian Fang, Zongben Xu, “Learning Rates of lq Coefficient Regularization Learning with Gaussian Kernel”, Neural Computation, 26, № 10, 2014, 2350
- Rui Li, Youming Liu, “Wavelet Optimal Estimations for Density Functions under Severely Ill-Posed Noises”, Abstract and Applied Analysis, 2013, 2013, 1
- Andreas Hofinger, Friedrich Pillichshammer, “Learning a function from noisy samples at a finite sparse set of points”, Journal of Approximation Theory, 161, № 2, 2009, 448
- Shao-Bo Lin, “Nonparametric regression using needlet kernels for spherical data”, Journal of Complexity, 50, 2019, 66
- Rui Li, YouMing Liu, “Supersmooth density estimations over L
p
risk by wavelets”, Sci. China Math., 60, № 10, 2017, 1901 - Gilles Blanchard, Nicole Mücke, “Optimal Rates for Regularization of Statistical Inverse Learning Problems”, Found Comput Math, 18, № 4, 2018, 971
- Gilles Blanchard, Nicole Mücke, “Kernel regression, minimax rates and effective dimensionality: Beyond the regular case”, Anal. Appl., 18, № 04, 2020, 683
- Andrew J. Kurdila, Sai Tej Paruchuri, Nathan Powell, Jia Guo, Parag Bobade, Boone Estes, Haoran Wang, “Approximation of discrete and orbital Koopman operators over subsets and manifolds”, Nonlinear Dyn, 112, № 8, 2024, 6291
- Mark J. van der Laan, Sandrine Dudoit, Aad W. van der Vaart, “The cross-validated adaptive epsilon-net estimator”, Statistics & Decisions, 24, № 3, 2006, 373