- Eugenio Hernández, José María Martell, Maria de Natividade, “Quantifying Democracy of Wavelet Bases in Lorentz Spaces”, Constr Approx, 33, № 1, 2011, 1
- P. Oswald, “On N-termed approximations in H s -norms with respect to the Haar system”, J Math Sci, 155, № 1, 2008, 109
- Gérard Kerkyacharian, Dominique Picard, “Regression in random design and warped wavelets”, Bernoulli, 10, № 6, 2004
- Vladimir Temlyakov, Encyclopedia of Applied and Computational Mathematics, 2015, 611
- Hugo Aimar, Ana Bernardis, Luis Nowak, “On the geometry of spaces of homogeneous type and the democracy of Haar systems in Lorentz spaces”, Journal of Mathematical Analysis and Applications, 476, № 2, 2019, 464
- Smbat Gogyan, “An example of an almost greedy basis in 𝐿¹(0,1)”, Proc. Amer. Math. Soc., 138, № 4, 2009, 1425
- Alexander Petukhov, “Fast implementation of orthogonal greedy algorithm for tight wavelet frames”, Signal Processing, 86, № 3, 2006, 471
- Paweł Bechler, “Wavelet Approximation of Distributions with Bounded Variation Derivatives”, J Fourier Anal Appl, 15, № 1, 2009, 31
- S. J. Dilworth, S. Gogyan, Denka Kutzarova, “On the Convergence of a Weak Greedy Algorithm for the Multivariate Haar Basis”, Constr Approx, 39, № 2, 2014, 343
- Fernando Albiac, José L. Ansorena, “On the permutative equivalence of squares of unconditional bases”, Advances in Mathematics, 410, 2022, 108695