20 citations to 10.1016/j.jfa.2008.11.006 (Crossref Cited-By Service)
  1. Grigori Rozenblum, Nikolai Vasilevski, “Toeplitz operators defined by sesquilinear forms: Fock space case”, Journal of Functional Analysis, 267, № 11, 2014, 4399  crossref
  2. Grigori Rozenblum, Nikolay Shirokov, “Some weighted estimates for the ∂̅-equation and a finite rank theorem for Toeplitz operators in the Fock space”, Proceedings of the London Mathematical Society, 109, № 5, 2014, 1281  crossref
  3. Grigorii Vladimirovich Rozenblum, Nikolai Leonidovich Vasilevski, “Ядерные операторы Тeплица с сингулярными символами”, Труды Математического института имени В. А. Стеклова, 311, 2020, 241  crossref
  4. Antti Perälä, Jari Taskinen, Jani Virtanen, “Toeplitz operators with distributional symbols on Fock spaces”, Funct. Approx. Comment. Math., 44, № 2, 2011  crossref
  5. Antti Perälä, Jari Taskinen, Jani Virtanen, “Toeplitz operators with distributional symbols on Bergman spaces”, Proceedings of the Edinburgh Mathematical Society, 54, № 2, 2011, 505  crossref
  6. Vincent Bruneau, Georgi Raikov, “Spectral properties of harmonic Toeplitz operators and applications to the perturbed Krein Laplacian”, ASY, 109, № 1-2, 2018, 53  crossref
  7. A. Samanta, S. Sarkar, “D. Luecking’s Finite Rank Theorem for Toeplitz Operator, Benedicks’ Theorem on the Heisenberg Group, and Uncertainty Principle for the Fourier–Wigner Transform”, J Math Sci, 235, № 2, 2018, 208  crossref
  8. Antti Perälä, “Toeplitz Operators on Bloch-type Spaces and Classes of Weighted Sobolev Distributions”, Integr. Equ. Oper. Theory, 71, № 1, 2011, 113  crossref
  9. Grigori Rozenblum, Nikolai Vasilevski, “Toeplitz Operators in the Herglotz Space”, Integr. Equ. Oper. Theory, 86, № 3, 2016, 409  crossref
  10. Farouq Alshormani, Hocine Guediri, “Brown-Halmos type theorems for Toeplitz operators on the Bergman space of the upper half-plane”, Journal of Mathematical Analysis and Applications, 542, № 2, 2025, 128821  crossref
Предыдущая
1
2