- Gilles Blanchard, Nicole Mücke, “Optimal Rates for Regularization of Statistical Inverse Learning Problems”, Found Comput Math, 18, № 4, 2018, 971
- Gérard Kerkyacharian, Mathilde Mougeot, Dominique Picard, Karine Tribouley, Multiscale, Nonlinear and Adaptive Approximation, 2009, 295
- Bastian Bohn, Michael Griebel, “Error Estimates for Multivariate Regression on Discretized Function Spaces”, SIAM J. Numer. Anal., 55, № 4, 2017, 1843
- Andreas Hofinger, Friedrich Pillichshammer, “Learning a function from noisy samples at a finite sparse set of points”, Journal of Approximation Theory, 161, № 2, 2009, 448
- Albert Cohen, Giovanni Migliorati, Fabio Nobile, “Discrete Least-Squares Approximations over Optimized Downward Closed Polynomial Spaces in Arbitrary Dimension”, Constr Approx, 45, № 3, 2017, 497
- Ha Quang Minh, “Some Properties of Gaussian Reproducing Kernel Hilbert Spaces and Their Implications for Function Approximation and Learning Theory”, Constr Approx, 32, № 2, 2010, 307
- G. Kerkyacharian, A. B. Tsybakov, V. Temlyakov, D. Picard, V. Koltchinskii, “Optimal Exponential Bounds on the Accuracy of Classification”, Constr Approx, 39, № 3, 2014, 421
- Martin Eigel, Reinhold Schneider, Philipp Trunschke, Sebastian Wolf, “Variational Monte Carlo—bridging concepts of machine learning and high-dimensional partial differential equations”, Adv Comput Math, 45, № 5-6, 2019, 2503
- Andrew J. Kurdila, Sai Tej Paruchuri, Nathan Powell, Jia Guo, Parag Bobade, Boone Estes, Haoran Wang, “Approximation of discrete and orbital Koopman operators over subsets and manifolds”, Nonlinear Dyn, 112, № 8, 2024, 6291
- Zheng-Chu Guo, Ding-Xuan Zhou, “Concentration estimates for learning with unbounded sampling”, Adv Comput Math, 38, № 1, 2013, 207